Explanation:
1 ) Find the value of 'A' in the set of
supplementary angles A and 74°
Solution,
A + 74° = 180° ( supplementary angle)
A = 180° - 74°
A = 106°
2 ) Find the value of 'A' in the set of
supplementary angles.A and 127°
Solution ,
A + 127° = 180° ( supplementary angle)
A = 180° - 127°
A = 53°
3 ) Use the law of exponent to rewrite...
Solution,
![= {4}^( - 6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pzqpnnabuvelko025x9819yzsjf1w850x4.png)
![= \frac{1}{ {4}^(6) } \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/lfcumzibmwb4kx586unnzewg6ofae1lkyy.png)
![= (1)/(4096) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/e50m8fjk7639rg418gc6kfwni1lxgmq3h1.png)
4 ) Determine if each equation
describes a function (yes) or not
(no). In the equation x represents
the input and y represents the
output y-8 = 7x
Solution,
![{y}^( - 8) = 7x](https://img.qammunity.org/2023/formulas/mathematics/high-school/tnrt4n3o32cmfv8shuxiw2snm3vc9sjq6g.png)
![{y}^( - 8) = 7x = \frac{1}{ {y}^(8) } = 7x \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/6g7vprnyrfxtke47957rli42sp8ev57idt.png)
![(1)/(7x) = {y}^(8) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/lsokk3glvhfo1ts6uh85f1nkxf4l68gl6q.png)
![y = ( (1)/(7x) {)}^{ (1)/(8) } \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/be93gnyvdnbgwsvom4mklq4p6ai1m1lqwq.png)
Yes , it is a function...
hope it helped !!!!