165k views
2 votes
The diagram shows the cross-section of two cylindrical metal rods of radii x cm and y cm. A thin band, of length P cm, holds the two rods tightly together.
\sf Show \: that\: P = 4√(xy) + \pi (x+y)+2(x-y)\:sin^(-1)\left((x-y)/(x+y) \right).

The diagram shows the cross-section of two cylindrical metal rods of radii x cm and-example-1
User Yokks
by
3.7k points

1 Answer

4 votes

See below

Explanation:

Refer to the attachment (i)

Observe that


  • P=AB+CD+\stackrel{\frown}{AC}+\stackrel{\frown}{BD}

  • \Delta EFH and
    \Delta HFG are right angle triangles as well as congruent
  • Rectangle ABFE is congruent to Rectangle GFDC

Consider ∆EFH

  • HF(hypotenuse)=x+y
  • EH(opposite side)=x-y

So,


\displaystyle\implies EF=√((x+y)^2-(x-y)^2)=√(4xy)=2√(xy) . . . . . using Pythagorean theorem.


\displaystyle \sin(\theta)=(x-y)/(x+y)\\\implies \theta=\sin^(-1)\left((x-y)/(x+y)\right)

. . . . . using trigonometry

Now we can easily deduce that

  • AB=2√xy
  • CD=2√xy

Notice that


  • \angle \stackrel{\frown}{AD}=\pi-2\theta

  • \angle \stackrel{\frown}{AC}=\pi+2\theta

Recall that


l_(arc)=\theta r

Therefore,


\stackrel{\frown}{AC}=x\pi+2x\sin^(-1)\left((x-y)/(x+y)\right)\\\stackrel{\frown}{BD}=y\pi-2y\sin^(-1)\left((x-y)/(x+y)\right)

So,


P=AB+CD+\stackrel{\frown}{AC}+\stackrel{\frown}{AD}\\ \implies 2√(xy)+2√(xy)+x\pi+2x\sin^(-1)\left((x-y)/(x+y)\right)+y\pi-2y\sin^(-1)\left((x-y)/(x+y)\right)\\ \implies 4√(xy)+x\pi+y\pi +2x\sin^(-1)\left((x-y)/(x+y)\right)-2y\sin^(-1)\left((x-y)/(x+y)\right)\\ \implies 4√(xy)+\pi(x+y)+2(x-y)\sin^(-1)\left((x-y)/(x+y)\right)\text{ (proven)}

The diagram shows the cross-section of two cylindrical metal rods of radii x cm and-example-1
User Jstevenco
by
3.0k points