Answer:
50
Explanation:
Given:
- Volume of the Moon = 2.0 × 10¹⁰ km³
- Volume of the Earth = 1.0 × 10¹² km³
To find how many Moon volumes could fit inside of the volume of the Earth, divide the given volume of the Earth by the given volume of the Moon:
![\sf \implies (1.0 * 10^(12))/(2.0 * 10^(10))](https://img.qammunity.org/2023/formulas/mathematics/high-school/oq1037kx54ebx8j5r0n8q9bl906q36tntt.png)
Separate:
![\sf \implies (1.0)/(2.0) * (10^(12))/(10^(10))](https://img.qammunity.org/2023/formulas/mathematics/high-school/yg4jr9vqrlefq13keudjn6smzt4m28ofmg.png)
![\textsf{Apply the Quotient Rule of exponents} \quad (a^b)/(a^c)=a^(b-c):](https://img.qammunity.org/2023/formulas/mathematics/high-school/w7nh57k6dlodtw2q3fsifjlah69pdp4p53.png)
![\sf \implies 0.5 * 10^(12-10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zqif37hnbs3gv009k4hr84ft4sedd6kcd7.png)
![\sf \implies 0.5 * 10^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nhyw4boifz4brkjge5f7zikrwrd4dltc8j.png)
Simplify:
![\implies \sf 0.5 * 10 * 10](https://img.qammunity.org/2023/formulas/mathematics/high-school/ahb61fzuu0kdxgkl9fwznofqvc1p5tushz.png)
![\implies \sf 5 * 10](https://img.qammunity.org/2023/formulas/mathematics/high-school/3jo8cx2txzj3d53nqric6qj83vpi0jej3q.png)
![\implies \sf 50](https://img.qammunity.org/2023/formulas/mathematics/high-school/49mrl0gzuibsonrai5otybimjh5504os2i.png)
Therefore, 50 Moon volumes could fit inside the volume of the Earth.