Answer:
EF = 5 units
GH = 6.4 units (nearest tenth)
Explanation:
Given:
To find the length of EF, use the distance formula.
Distance between two points
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ryn3fzehb0ozllfgi4eom8sc1fxhgg6wgd.png)
![\textsf{where }(x_1,y_1) \textsf{ and }(x_2,y_2)\:\textsf{are the two points}.](https://img.qammunity.org/2023/formulas/mathematics/college/gcwswvwo4ge3dx82nkg5og65rhu12fvozx.png)
Substitute the given points into the formula:
![\begin{aligned}\sf EF & = √((x_F-x_E)^2+(y_F-y_E)^2)\\& = \sqrt{(5-1)^2+(1-4)^2\\ & = √(4^2+(-3)^2)\\ & = √(16+9)\\ & = √(25)\\ & = 5\:\sf units\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/e9axtwj5ixllxnyljbxuxmrafi8yobc8aq.png)
Therefore, the length of EF is 5 units.
--------------------------------------------------------------------------------------------------
Given:
To find the length of GH, use the distance formula.
Distance between two points
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ryn3fzehb0ozllfgi4eom8sc1fxhgg6wgd.png)
![\textsf{where }(x_1,y_1) \textsf{ and }(x_2,y_2)\:\textsf{are the two points}.](https://img.qammunity.org/2023/formulas/mathematics/college/gcwswvwo4ge3dx82nkg5og65rhu12fvozx.png)
Substitute the given points into the formula:
![\begin{aligned}\sf GH & = √((x_H-x_G)^2+(y_H-y_G)^2)\\& = \sqrt{(1-(-3))^2+(6-1)^2\\ & = √(4^2+5^2)\\ & = √(16+25)\\ & = √(41)\\ & = 6.4\:\sf units\:\:(nearest\:tenth)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/a2moaool83odnodknyoad305nwcmnad07j.png)
Therefore, the length of GH is about 6.4 units (nearest tenth).