100k views
0 votes
Do anyone know how to solve this

Do anyone know how to solve this-example-1

2 Answers

4 votes

Answer:


\displaystyle {\rm{ \frac{2 * {4}^(0) * {6}^(2) }{ {2}^(4) * {4}^( - 1) * 6 } }}

  • Any base with zero index equal to 1.


\displaystyle {\rm{ \frac{2 * \bold{1} * {6}^(2) }{ {2}^(4) * {4}^( - 1) * {6}^(1) } }}

  • 6 to the power 2 means the base 6 is multiplied 2 times.


\displaystyle {\rm{ \frac{2 * 1 * \bold{36}}{ {2}^(4) * {4}^( - 1) * 6 } }}

  • 2 to the power 4 means the base 2 is multiplied 4 times.


\displaystyle {\rm{ \frac{2 * 1 * 36}{ \bold{16} * {4}^( - 1) * 6 } }}


\displaystyle {\rm{ \frac{2 * 1 * 36}{16 * \bold{ (1)/(4)} * 4} }}


\left[ \because \: {x}^( - m) = \frac{1}{ {x}^(m) } \right]


\displaystyle {\rm{ \frac{2 * 1 * 36}{ \cancel{16^4} * (1)/( \cancel4) * 6 } }}


\displaystyle {\rm{ (72)/(24) }}


\displaystyle {\rm{ (2 * 2 * 2 * 3 * 3)/(2 * 2 * 2 * 3) }}

  • Cancel the common factors....


3

Explanation:


\frak{ \pink{Seolle...a_(prodite)}}

User Jakob Stark
by
3.6k points
5 votes


\huge\text{Hey there!}



\mathsf{(2*4^0*6^2)/(2^4 * 4^(-1) *6^1)}\\\\\mathsf{= (2*\bf 1*36)/(2^4 * 4^(-1) *6^1)}\\\\\mathsf{= (2* \bf 36)/(2^4 * 4^(-1) *6^1)}\\\\\mathsf{= (\bf 72)/(2^4 * 4^(-1) *6^1)}\\\\\mathsf{= (72)/(\bf 16* (1)/(4)*6)}\\\\\mathsf{= (72)/(\bf 16*6)}\\\\\mathsf{= (72)/(\bf 24)}\\\\\mathsf{= \bf 3}



\huge\textbf{Therefore, your answer should be: }


\huge\boxed{\mathsf{3}}\huge\checkmark



\huge\text{Good luck on your assignment \& enjoy your day!}


~
\frak{Amphitrite1040:)}

User VanBantam
by
3.6k points