205k views
4 votes
Find a function r(t) that describes the curve where the surfaces intersect. x^2 y^2=16 z=2x 3y

1 Answer

3 votes

I'm assuming the surfaces are the cylinder
x^2+y^2=16 and the plane
z=2x+3y.

Let
x=4\cos(t) and
y=4\sin(t). Then


z=2x+3y=8\cos(t)+12\sin(t)

We can simplify this using the identity


R \cos(\alpha + \beta) = R \cos(\alpha)\cos(\beta) - R \sin(\alpha) \sin(\beta)

Let
\alpha=t, then


R \cos(t + \beta) = R \cos(t)\cos(\beta) - R \sin(t) \sin(\beta) = 8\cos(t)+12\sin(t)


\implies \begin{cases}R\cos(\beta) = 8 \\ R\sin(\beta) = -12\end{cases}

We have


\left(R\cos(\beta)\right)^2 + \left(R\sin(\beta)\right)^2 = 8^2 + (-12)^2 \implies R^2 = 208 \implies R = 4โˆš(13)

and


(R\sin(\beta))/(R\cos(\beta)) = -\frac{12}8 \implies \tan(\beta) = -\frac32 \implies \beta = -\arctan\left(\frac32\right)

Then the vector function for the curve is


\vec r(t) = 4\cos(t)\,\vec\imath + 4\sin(t)\,\vec\jmath + 4โˆš(13)\,\cos\left(t - \arctan\left(\frac32\right)\right)\,\vec k

with
0\le t\le2\pi.

Find a function r(t) that describes the curve where the surfaces intersect. x^2 y-example-1
User Samir Chauhan
by
3.5k points