f ( x ) = 1/x+5 - 1
y = 1/x+5 - 1
Add both sides 1
y + 1 = 1/x+5 - 1 + 1
y + 1 = 1/x+5
Multiply both sides by ( x + 5 )
( x + 5 ) × ( y + 1 ) = ( x + 5 ) × 1 / x + 5
xy + x + 5y + 5 = 1
x( y + 1 ) + 5y + 5 = 1
Subtract both sides 5
x( y + 1 ) + 5y + 5 - 5 = 1 - 5
x( y + 1 ) + 5y = - 4
Subtract both sides 5y
x( y + 1 ) + 5y - 5y = - 4 - 5y
x( y + 1 ) = - 5y - 4
Divide both sides by ( y + 1 )
x( y + 1 ) ÷ ( y + 1 ) = ( - 5y - 4 ) ÷ ( y + 1 )
x = - 5y - 4 / y + 1
Thus the inverse function of f(x) is :
y = - 5x - 4 / x + 1 ( D : R - { - 1 } )