176,549 views
15 votes
15 votes
Factor the expression. 144*x^2 - 25

User Katzenversteher
by
2.9k points

2 Answers

16 votes
16 votes

Answer:

(12x + 5)(12x − 5)

Explanation:

1.
2^4 * 3^2 * x^2 -5^2

2.
(2^2 * 3x)^2 -5^2

3.
(2^2 * 3x -5)(2^2 * 3x +5)

4.
(4 * 3x - 5)(4 * 3x + 5)

5.
(12x-5)(12x+5)

User JBach
by
3.2k points
7 votes
7 votes

Answer:


\hookrightarrow \: { \tt{(144 {x}^(2) - 25)}} \: \hookleftarrow


\dashrightarrow \: { \tt{ {12}^(2) {x}^(2) - {5}^(2) }} \\ \\ \dashrightarrow \: { \tt{ {(12x)}^(2) - {5}^(2) }}

• from difference of two squares identity of quadratics:


{ \boxed{ \rm{( {a}^(2) - {b}^(2) ) = (a - b)(a + b) }}}

a is 12x

b is 5


\dashrightarrow \:{ \boxed{ \boxed { \tt{(12x - 5)(12x + 5)}}}}

User Leventix
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.