38.2k views
0 votes
Solve the equation.

x/x−2 + 1/x−6 =4/x^2−8x+12

Drag the choice or choices into the box to correctly state the solution to the equation.

Solve the equation. x/x−2 + 1/x−6 =4/x^2−8x+12 Drag the choice or choices into the-example-1
User Yesnik
by
3.2k points

2 Answers

2 votes

I hope it's helpful .......

Solve the equation. x/x−2 + 1/x−6 =4/x^2−8x+12 Drag the choice or choices into the-example-1
User Marcelo Zabani
by
3.6k points
3 votes


\boldsymbol{\sf{(x)/(x-2)+(1)/(x-6)=(4)/(x^(2) -8x+12 ) }}

We factor the expression.


\boldsymbol{\sf{(x)/(x-2)+(1)/(x-6)=(4)/((x-6)(x-2) ) }}

Multiply both sides of the equation by the common denominator.


\boldsymbol{\sf{(x(x-2)(x-6))/(x-2)+((x-2)(x-6))/(x-6)=(4(x-2)(x-6))/((x-6)(x-2)) }}

Simplify fractions


\boldsymbol{\sf{x(x-6)+((x-2)(x-6))/(x-6)=(4(x-2)(x-6))/((x-6)(x-2)) }}


\boldsymbol{\sf{x(x-6)+x-2=(4(x-2)(x-6))/((x-6)(x-2)) }}


\boldsymbol{\sf{x(x-6)+x-2=4 }}

Apply the multiplicative law of distribution.


\boldsymbol{\sf{x^(2) -6x+x-2=4 }}

Combine as terms.


\boldsymbol{\sf{x^(2) -5x-2=4 }}

Move all terms to the side of the equation.


\boldsymbol{\sf{x^(2) -5x-2-4=0 }}

Combine as terms


\boldsymbol{\sf{x^(2) -5x-6=0 }}

Separate the middle term into two terms.


\boldsymbol{\sf{x^(2) -6x+x-6=0 }}

Factor the first two terms and the last two terms respectively.


\boldsymbol{\sf{x(x-6)+(x-6)=0 }}

Take out the common factor


\boldsymbol{\sf{(x-6)(x+1)=0}}

If the product of the two factors is equal to 0, then at least one factor is 0.


\boldsymbol{\sf{x-6=0 \ or \ x+1=0 }}

Order the unknown terms on the left side of the equation.


\boldsymbol{\sf{x=6 \ or \ x=-1}}

Find the intersection


\green{\boxed{\boldsymbol{\sf{\green{Answer \ \ \longmapsto \ x=-1}}}}}

Skandar

User Nebillo
by
3.6k points