210k views
1 vote
Find the next two terms 1,5,17,53,161

1 Answer

2 votes

Let
a_n denote the
n-th term in the sequence. By checking the forward differences, we observe


a_2 - a_1 = 5 - 1 = 4 = 4\cdot3^0


a_3 - a_2 = 17 - 5 = 12 = 4\cdot3^1


a_4 - a_3 = 53 - 17 = 36 = 4\cdot3^2


a_5 - a_4 = 161 - 53 = 108 = 4\cdot3^3

The pattern is


\begin{cases} a_1 = 1 \\ a_n = a_(n-1) + 4\cdot3^(n-2) & \text{for } n\ge1 \end{cases}

So we find


a_6 = a_5 + 4\cdot3^(6-2) = 161 + 4\cdot3^4 = \boxed{485}


a_7 = a_6 + 4\cdot3^(7-2) = 485 + 4\cdot3^5 = \boxed{1457}

We also could have solved for
a_n first. By substitution,


a_(n-1) = a_(n-2) + 4\cdot3^(n-3) \\\\ ~~~~ \implies a_n = a_(n-2) + 4 \left(3^(n-2) + 3^(n-3)\right)


a_(n-2) = a_(n-3) + 4\cdot3^(n-4) \\\\ ~~~~ \implies a_n = a_(n-3) + 4 \left(3^(n-2) + 3^(n-3) + 3^(n-4)\right)


a_(n-3) = a_(n-4) + 4\cdot3^(n-5) \\\\ ~~~~ \implies a_n = a_(n-4) + 4 \left(3^(n-2) + 3^(n-3) + 3^(n-4) + 3^(n-5)\right)

and so on. After so many iterations of this, we see the pattern


a_n = a_(n-k) + 4 \displaystyle \sum_(\ell=1)^k 3^(n-2-(\ell-1)) = a_(n-k) + 4 \cdot 3^(n-1) \sum_(\ell=1)^k \frac1{3^\ell}

so that for
k=n-1, we get


\displaystyle a_n = a_1 + 4 \cdot 3^(n-1) \sum_(\ell=1)^(n-1) \frac1{3^\ell}

Let
S_(n-1) be the remaining sum. We have


S_(n-1) = \frac13 + \frac1{3^2} + \frac1{3^3} + \cdots + \frac1{3^(n-1)}


\frac13 S_(n-1) = \frac1{3^2} + \frac1{3^3} + \frac1{3^4} + \cdots + \frac1{3^n}


\implies \frac23 S_(n-1) = \frac13 - \frac1{3^n}


\implies S_(n-1) = \frac12 \left(1 - \frac1{3^(n-1)}\right)

and so


\displaystyle a_n = 1 + 4 \cdot 3^(n-1) \cdot \frac12 \left(1 - \frac1{3^(n-1)}\right) \\\\ a_n = 2\cdot3^(n-1) - 1

Then


a_6 = 2\cdot3^(6-1)-1 = 485


a_7 = 2\cdot3^(7-1)-1 = 1457

User Ben Lee
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories