The tetrahedron in question is the set
![T = \left\{(x,y,z)\in\Bbb R^3 ~:~ 0\le x\le1,0\le y\le1-x,0\le z\le1-x-y\right\}](https://img.qammunity.org/2023/formulas/physics/high-school/sgyhkq5gbbty71lg5mjc4jg7yxayahlqq8.png)
Compute the divergence of the given field.
![\vec f(x,y,z) = \langle x,2y,z \rangle \implies \mathrm{div}(\vec f) = (\partial x)/(\partial x) + (\partial (2y))/(\partial y) + (\partial z)/(\partial z) = 4](https://img.qammunity.org/2023/formulas/physics/high-school/dnt8dat12uokhspl4kpyutr9bdtv1blall.png)
By the divergence theorem, the flux of
across the boundary of
is equal to the integral of the divergence over
.
![\displaystyle \iint_(\partial T) \vec f \cdot d\vec S = \iiint_T \mathrm{div}(\vec f) \,dV = 4 \iiint_T dV](https://img.qammunity.org/2023/formulas/physics/high-school/jiglwv84pcdcs8lffeggdtnj6mair6hwo9.png)
Compute the volume integral. We have
![\displaystyle \iiint_T dV = \int_(x=0)^1 \int_(y=0)^(1-x) \int_(z=0)^(1-x-y) dz\,dy\,dx \\\\ ~~~~~~~~ = \int_0^1 \int_0^(1-x) (1-x-y) \, dy \, dx \\\\ ~~~~~~~~ = \int_0^1 \left((1-x)^2 - \frac{(1-x)^2}2\right) \, dx \\\\ ~~~~~~~~ = \frac12 \int_0^1 (1-x)^2 \, dx \\\\ ~~~~~~~ = \frac12 \int_0^1 (x-1)^2 \, dx \\\\ ~~~~~~~~ = \frac12 \int_(-1)^0 x^2 \, dx \\\\ ~~~~~~~~ = \frac16 (0^3 - (-1)^3) = \frac16](https://img.qammunity.org/2023/formulas/physics/high-school/dmzyi4x0lkz9sipjlkfd8s2apj0chhnj54.png)
Hence the flux is
![\displaystyle \iint_(\partial T) \ec f \cdot d\vec S = 4 \iiint_T dV = \frac46 = \boxed{\frac23}](https://img.qammunity.org/2023/formulas/physics/high-school/9s5muhfy9full7dx6dbt76whwh6oq1rx5v.png)
(Thank you stranger for pointing out the error!)