20.2k views
3 votes
{x+1} +{x+3} +{x+5} +.....{x+59}= 1740

User John Rasch
by
4.6k points

1 Answer

2 votes

Simplify the equation as

(x + 1) + (x + 3) + (x + 5) + … + (x + 59) = 1740

30x + (1 + 3 + 5 + … + 59) = 1740

There are 30 grouped terms because each group is x plus the n-th positive odd integer, which we can write as 2n - 1 for n ≥ 1. Then 2n - 1 = 59 when n = 30.

Let S be the sum of the first n positive integers.

S = 1 + 2 + 3 + … + (n - 2) + (n - 1) + n

Reverse the order of terms in the sum,

S = n + (n - 1) + (n - 2) + … + 3 + 2 + 1

Double S by adding terms in the same position.

2S = (1 + n) + (2 + (n - 1)) + … + ((n - 1) + 2) + (n + 1)

2S = n (n + 1)

S = n (n + 1)/2

Then the sum of the first 2n positive integers is 2n (2n + 1)/2 = 2n² + n.

Let S' be the sum of the first n odd positive integers.

S' = 1 + 3 + 5 + … + (2n - 5) + (2n - 3) + (2n - 1)

We have

2n² + n = 1 + 2 + 3 + 4 + … + (2n - 3) + (2n - 2) + (2n - 1) + 2n

… … … … = [1 + 3 + … + (2n - 3) + (2n - 1)] + [2 + 4 + … + (2n - 2) + 2n]

… … … … = S' + 2 [1 + 2 + … + (n - 1) + n]

… … … … = S' + 2S

⇒ S' = (2n² + n) - (n² + n) = n²

All this to say

30x + (1 + 3 + 5 + … + 59) = 1740

reduces to

30x + 30² = 1740

30x = 840

x = 28

User Tedski
by
4.4k points