227k views
3 votes

\sqrt{x \sqrt{x \sqrt{x √(x....) } } } = \sqrt{4x + \sqrt{4x + \sqrt{4x + √(...) } } } \: pls \: help \: me

pls help me ......


User Ntjess
by
8.9k points

1 Answer

5 votes

First observe that if
a+b>0,


(a + b)^2 = a^2 + 2ab + b^2 \\\\ \implies a + b = √(a^2 + 2ab + b^2) = √(a^2 + ab + b(a + b)) \\\\ \implies a + b = \sqrt{a^2 + ab + b √(a^2 + ab + b(a+b))} \\\\ \implies a + b = \sqrt{a^2 + ab + b \sqrt{a^2 + ab + b √(a^2 + ab + b(a+b))}} \\\\ \implies a + b = \sqrt{a^2 + ab + b \sqrt{a^2 + ab + b \sqrt{a^2 + ab + b √(\cdots)}}}

Let
a=0 and
b=x. It follows that


a+b = x = \sqrt{x \sqrt{x \sqrt{x √(\cdots)}}}

Now let
b=1, so
a^2+a=4x. Solving for
a,


a^2 + a - 4x = 0 \implies a = \frac{-1 + √(1+16x)}2

which means


a+b = \frac{1 + √(1+16x)}2 = \sqrt{4x + \sqrt{4x + \sqrt{4x + √(\cdots)}}}

Now solve for
x.


x = \frac{1 + √(1 + 16x)}2 \\\\ 2x = 1 + √(1 + 16x) \\\\ 2x - 1 = √(1 + 16x) \\\\ (2x-1)^2 = \left(√(1 + 16x)\right)^2

(note that we assume
2x-1\ge0)


4x^2 - 4x + 1 = 1 + 16x \\\\ 4x^2 - 20x = 0 \\\\ 4x (x - 5) = 0 \\\\ 4x = 0 \text{ or } x - 5 = 0 \\\\ \implies x = 0 \text{ or } \boxed{x = 5}

(we omit
x=0 since
2\cdot0-1=-1\ge0 is not true)

User Sahdeep Singh
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories