Answer:
20
Explanation:
Use the distance formula to determine the distance between the two points.
![\text{Distance}=√((x_2=x_1)^2+(y_2-y1)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/x8tn255l5j5tnth8a3yuxsex41hi6047e0.png)
Substitute the actual values of the points into the distance formula.
![√(((-7)-5)^2+((-7)-9)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/iifp2jby3t137o816qd7szaryj44fkam6f.png)
Simplify.
⇒ Subtract 5 from 7.
![√((-12)^2+((-7)-9)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/il03ovpg0mppyfynj4iakrxtbbtcmrz20t.png)
⇒ Raise -12 to the power of 2.
![√(144+((-7)-9)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/w0muymg52ktvagxlp6cfo9801qew54azq5.png)
⇒ Subtract 9 from -7.
![√(144+(-16)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3q2qt70xxru9t86sglvdcdwck3ghy62leo.png)
⇒ Raise -16 to the power of 2.
![√(144+256)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hyuggtg709648aa9gel2e7x2o90wpec472.png)
⇒ Add 144 and 256.
![√(400)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ljk498egbbl72ar9k18hczyr9srer3rtpx.png)
⇒ Rewrite 400 as 20².
![√(20^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tg95yfejcomca2ip0hp9znl0jqq0gxfdn0.png)
⇒ Pull terms out from under the radical, assuming positive real numbers.
20