217k views
2 votes
Divide (3x^4- 2x + 1) by (x² +2)

User Andika
by
8.3k points

1 Answer

1 vote

Answer:


3x^2-6-(2x-13)/(x^2+2)

Explanation:

As the divisor is quadratic, use long division rather than synthetic division:


\large \begin{array}{r}3x^2-6\phantom{)}\\x^2+2{\overline{\smash{\big)}\,3x^4-2x+1\phantom{)}}}\\{-~\phantom{(}\underline{(3x^4+6x^2)\phantom{-b)}}\\-6x^2-2x+1\phantom{)}\\-~\phantom{()}\underline{(-6x^2\phantom{))))}-12)\phantom{}}\\-2x+13\phantom{)}\\\end{array}

Therefore:


\textsf{Dividend}: \quad 3x^4-2x+1


\textsf{Divisor}: \quad x^2+2


\textsf{Quotient}: \quad 3x^2-6


\textsf{Remainder}: \quad -2x+13=-(2x-13)

When dividing a polynomial, the result is the quotient plus the remainder over the divisor:


\implies (3x^4-2x+1)/(x^2+2)=3x^2-6-(2x-13)/(x^2+2)

User Pedro Lopez
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories