Final answer:
The angular acceleration of the CD is -7.85 rad/s². The CD goes through approximately -96 revolutions.
Step-by-step explanation:
To find the angular acceleration of the CD, we need to use the formula:
Angular acceleration (α) = (Final angular velocity - Initial angular velocity) / time
Given that the initial angular velocity is 600 rpm and the time taken is 4 seconds:
Angular acceleration (α) = (0 - 600 rpm) / 4 s = -150 rpm/s
(a) The angular acceleration in rad/s² can be converted by multiplying by a conversion factor of 2π/60:
Angular acceleration (α) = (-150 rpm/s) x (2π/60 rad/s²) = -15π/6 rad/s² = -7.85 rad/s²
(b) To find the number of revolutions, we can use the formula:
Number of revolutions = (Final angular velocity - Initial angular velocity) / (2π)
Given that the final angular velocity is 0 rpm and the initial angular velocity is 600 rpm:
Number of revolutions = (0 - 600 rpm) / (2π)
Number of revolutions ≈ -96 revolutions (negative value indicates the CD is rotating in the opposite direction).