Let
be vectors that point to
, respectively.
![\vec a = 7\,\vec\imath+8\,\vec\jmath+2\,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/sw0m3qivbxip4h4dyad4wnrmhu6epu9iab.png)
![\vec b = 2\,\vec\imath + \vec\jmath + 2\,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/i2lb2sg5cmha8xy7k8zsd5v707kzhwt5e7.png)
![\vec c = -5\,\vec\imath-6\,\vec\jmath-6\,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/id8i699n9rndi28d0bv5d20nstude01dtj.png)
Then consider the directed line segments
,
, and
, to which we'll assign the vectors
![AB ~:~ \vec b - \vec a = -5\,\vec\imath - 7\,\vec\jmath](https://img.qammunity.org/2023/formulas/mathematics/college/lu2a466lgjg1sqfze8gmfwgqwdtdikcwnv.png)
![BC ~:~ \vec c - \vec b = -7\,\vec\imath-7\,\vec\jmath-8\,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/2zm8af47828l7ewzw2btyljacflndj1kid.png)
![CA ~:~ \vec a - \vec c = 12\,\vec\imath+14\,\vec\jmath+8\,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/3cfdic6fce9q989sf4o86t1q2wds2pmfqm.png)
whose lengths are
![\|\vec b - \vec a\| = √((-5)^2+(-7)^2) = √(74)](https://img.qammunity.org/2023/formulas/mathematics/college/a4atb14e393v326hpscpz5nyub5524kxsx.png)
![\|\vec c - \vec b\| = √((-7)^2+(-7)^2+(-8)^2) = √(162) = 9\sqrt2](https://img.qammunity.org/2023/formulas/mathematics/college/gvn8k5sd27jzlk8a8bcyeq1woro9d1xwoe.png)
![\|\vec a - \vec c\| = √(12^2+14^2+8^2) = √(404) = 2√(101)](https://img.qammunity.org/2023/formulas/mathematics/college/us8g6tta2oopkccj41lkpk5l1nogxs3un1.png)
The angle at vertex
is made by the directed segments
and
, corresponding to
and
. Use the dot product identity to find the measure of
.
![(\vec b - \vec a) \cdot (\vec c - \vec a) = \|\vec b - \vec a\| \|\vec c - \vec a\| \cos\left(m\angle A\right) \\\\ 158 = 2√(7474) \cos\left(m\angle A\right) \\\\ \cos\left(m\angle A\right) = (79)/(√(7474)) \\\\ m\angle A = \cos^(-1)\left((79)/(√(7474))\right) \approx \boxed{23.964^\circ}](https://img.qammunity.org/2023/formulas/mathematics/college/hfr3outmh5reswerw4mlscesgh1agm9tm8.png)
Similarly, the angle at
is made by
and
[/tex]. Then
![(\vec a-\vec b) \cdot (\vec c - \vec b) = \|\vec a - \vec b\| \|\vec c - \vec b\| \cos\left(m\angle B\right) \\\\ \cos\left(m\angle B\right) = -(14)/(3√(37)) \\\\ m\angle B = \cos^(-1)\left(-(14)/(3√(37))\right) \approx \boxed{140.103^\circ}](https://img.qammunity.org/2023/formulas/mathematics/college/sasn8tpdtlabkusq0zietwkmq5s6l1wd5l.png)
Do the same for
, or simply use the fact that the interior angles in any triangle sum to 180°. You should find
![m\angle C = \cos^(-1)\left((41)/(3√(202))\right) = 180^\circ - m\angle A - m\angle B \approx \boxed{15.933^\circ}](https://img.qammunity.org/2023/formulas/mathematics/college/jhzea3vyhjko04l4b12xohb1sr7ncx2zxs.png)