118k views
5 votes
1 {d^2theta }/{dt^2}+{b/l}*{d\theta }/{dt}+{k/l}\theta =0

y1(t) = theta(t) and y2(t) = theta'(t) , show that equation can be written as a system of first order ODEs involving y1 and y2.
Summarise the system in the matrix equation y'= M y
2 Show that the eigenvalues of M

1 {d^2theta }/{dt^2}+{b/l}*{d\theta }/{dt}+{k/l}\theta =0 y1(t) = theta(t) and y2(t-example-1

1 Answer

6 votes

(a) Given the ODE


(d^2\theta)/(dt^2) + \frac bI (d\theta)/(dt) + \frac kI \theta = 0

and substituting
y_1 = \theta and
y_2=\theta', it follows that
{y_1}' = y_2 and
{y_2}' = \theta'', so we get the system of ODEs


\begin{cases} (dy_2)/(dt) + \frac bI y_2 + \frac kI y_1 = 0 \\\\ (dy_1)/(dt) = y_2 \end{cases}

which we can write in matrix form as


\begin{bmatrix}y_1\\y_2\end{bmatrix}' = \begin{bmatrix}0 & 1 \\\\ -\frac kI & -\frac bI\end{bmatrix} \begin{bmatrix}y_1 \\ y_2\end{bmatrix}

(b) Compute the eigenvalues for the coefficient matrix.


\det\begin{bmatrix} -\lambda & 1 \\\\ - \frac kI & -\frac bI - \lambda \end{bmatrix} = \lambda^2 + \frac bI \lambda + \frac kI = 0 \\\\ \implies \lambda = \frac{-\frac bI \pm \sqrt{\left(\frac bI\right)^2 - \frac{4k}I}}2 = (-b \pm √(b^2-4kI))/(2I)

User Kamel Mili
by
7.5k points