Answer:
a) OA = 1 unit
b) BC = 3 units
c) OD = 2 units
d) AC = 3√2 units
Explanation:
Given function:
![f(x)=(2)/(x)-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/dns0jz2juss1bhzue4v9n1pq0fcdualu6z.png)
Part (a)
Point A is the x-intercept of the curve.
To find the x-intercept of the curve (when y = 0), set the function to zero and solve for x:
![\begin{aligned}f(x) & = 0\\\implies (2)/(x)-2 & = 0\\(2)/(x) & = 2\\2 & = 2x\\\implies x & = 1\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3cjs5f18uy9qifz9yw30805jyth4qcnxbz.png)
Therefore, A (1, 0) and so OA = 1 unit.
Part (b)
If OB = 2 units then B (-2, 0). Therefore, the x-value of Point C is x = -2.
To find the y-value of Point C, substitute x = -2 into the function:
![\implies f(-2)=(2)/(-2)-2=-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/xd7mwx2vxxbmd8slmt4p3pe342wrmr9y9s.png)
Therefore, C (-2, -3) and so BC = 3 units.
Part (c)
Asymptote: a line that the curve gets infinitely close to, but never touches.
The y-value of Point D is the horizontal asymptote of the function.
The function is undefined when x = 0 and therefore when y = -2.
Therefore, D (0, -2) and so OD = 2 units.
Part (d)
From parts (a) and (c):
To find the length of AC, use the distance between two points formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ryn3fzehb0ozllfgi4eom8sc1fxhgg6wgd.png)
![\textsf{where }(x_1,y_1) \textsf{ and }(x_2,y_2)\:\textsf{are the two points.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9eqpvjw187ug1r98xarf3y4yra9tl76igv.png)
Therefore:
![\sf \implies AC=√((x_C-x_A)^2+(y_C-y_A)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/741a5kfken0pifbdj7occtw6p8zll1juc2.png)
![\sf \implies AC=√((-2-1)^2+(-3-0)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s055d169la84eqspicrhqt6si8191hy1h5.png)
![\sf \implies AC=√((-3)^2+(-3)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/w2m2bq0huoa0cl1477epuveh5nrl7bzify.png)
![\sf \implies AC=√(9+9)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2zyajlbfm330ov0372eg7y0plz81tsi4ui.png)
![\sf \implies AC=√(18)](https://img.qammunity.org/2023/formulas/mathematics/high-school/scq1ulv51ugilrle6reb6v20ftysy2el8g.png)
![\sf \implies AC=√(9 \cdot 2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/674065e5vfkchpy0nbuifuc5x1cuel4e6m.png)
![\sf \implies AC=√(9)√(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5lfpjoyljev7elisvztym5sf91t5693zfo.png)
![\sf \implies AC=3√(2)\:\:units](https://img.qammunity.org/2023/formulas/mathematics/high-school/faxp0lqv6enlkm5j3p1l3o2ku7l49xqhl5.png)