225k views
2 votes
Solve this numerical please.​

Solve this numerical please.​-example-1

1 Answer

3 votes

Let
\vec a,\vec b,\vec c,\vec d be vectors pointing to
A,B,C,D respectively.

Then


AB = \vec b - \vec a = 4\,\vec\imath - 3\,\vec k


BC = \vec c - \vec b = -2\,\vec\jmath


CD = \vec d - \vec c = 2\,\vec\jmath - 4\,\vec k

and the resultant vector is


\vec a + \vec b + \vec c + \vec d = -\vec\imath + 2\,\vec\jmath + 3\,\vec k

We want to find
\vec a, the displacement from the origin to
A.

By elimination, we have


(\vec b - \vec a) + (\vec c - \vec b) = \vec c - \vec a \\\\ \implies \vec c - \vec a = (4\,\vec\imath - 3\,\vec k) + (-2\,\vec\jmath) = 4\,\vec\imath - 2\,\vec\jmath - 3\,\vec k


(\vec c - \vec a) + (\vec d - \vec c) = \vec d - \vec a \\\\ \implies \vec d - \vec a = (4\,\vec\imath - 2\,\vec\jmath - 3\,\vec k) + (2\,\vec\jmath - 4\,\vec k) = 4\,\vec\imath - 7\vec k

Then in the resultant equation, we have


\vec a + \vec b + \vec c + \vec d = -\vec\imath + 2\,\vec\jmath + 3\,\vec k \\\\ \vec a + (\vec b - \vec a) + (\vec c - \vec a) + (\vec d - \vec a) = -3\vec a -\vec\imath + 2\,\vec\jmath + 3\,\vec k

Solve for
\vec a.


4\vec a + (4\,\vec\imath - 3\,\vec k) + (4\,\vec\imath - 2\,\vec\jmath - 3\,\vec k) + (4\,\vec\imath - 7\vec k) = -\vec\imath + 2\,\vec\jmath + 3\,\vec k \\\\ 4 \vec a + 12\,\vec\imath - 2\,\vec\jmath - 13\,\vec k = -\vec\imath + 2\,\vec\jmath + 3\,\vec k \\\\ 4\vec a = -13\,\vec\imath + 4\,\vec\jmath + 16\,\vec k \\\\ \boxed{\vec a = -\frac{13}4\,\vec\imath + \vec\jmath + 4\,\vec k}

User BoCoKeith
by
5.7k points