Answer:
y = x^2 - 6x + 3
Explanation:
let the equation of the parabola (in standard form) be y = ax^2 + bx + c
sub (3,-6), (1,-2) and (6,3):
-6 = a(3)^2 + b(3) + c
-6 = 9a + 3b + c
c = -6 - 9a - 3b --(1)
-2 = a(1)^2 + b(1) + c
-2 = a + b + c --(2)
3 = a(6)^2 + b(6) + c
3 = 36a + 6b + c --(3)
sub (1) into (2):
-2 = a + b - 6 - 9a - 3b
b = -(4a + 2) --(4)
sub (1) and (4) into (3):
3 = 36a + 6(-4a-2) - 6 - 9a - 3(-4a-2)
3 = 36a -24a - 12 - 6 - 9a + 12a + 6
15a = 15
a = 1
sub a = 1 into (4):
b = -(4(1) + 2)
b = -6
sub a = 1 and b = -6 into (1):
c = -6 - 9(1) - 3(-6)
c = 3
therefore, equation of parabola is y = x^2 - 6x + 3
if you'd like to explore more math tips do give my insta a checkout: learntionary