∑Hey , jillianwagler ⊃
Answer:
x = 7, y = -5
Explanation:
Given~:
Solve the system below using elimination
{5x+9y= -10}
{7x+10y= -1}
Solve:
![\begin{bmatrix}5x+9y=-10\\ 7x+10y=-1\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9mib60248tx1o90wsdvyiyf50bztsj8eox.png)
Isolate x ( 5x + 9y = -10 ) :
![\mathrm{x=(-10-9y)/(5)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mu9y5kh0ce58yt7rt0mi08ubcwv6uf0g27.png)
Substitute:
![\mathrm{x=(-10-9y)/(5)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mu9y5kh0ce58yt7rt0mi08ubcwv6uf0g27.png)
![\begin{bmatrix}7\cdot (-10-9y)/(5)+10y=-1\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kzg18l7a019ohmfpdd897oa93fz18637jk.png)
![\begin{bmatrix}(-70-13y)/(5)=-1\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7a00qsgy76pv342x7tstfhgg19h53b73js.png)
Isolate y :
![(-70-13y)/(5)=1:y=-5](https://img.qammunity.org/2023/formulas/mathematics/high-school/syw4c1hs2o3kfotmx6qqkjyz3jvie54j9b.png)
Substitute:
![y=-5](https://img.qammunity.org/2023/formulas/mathematics/high-school/49njks2kl4v7di0m489rm5i4xohp6pw280.png)
![x=(-10-9\left(-5\right))/(5)=7](https://img.qammunity.org/2023/formulas/mathematics/high-school/uu34rps6zcoid8r823x7wwj0w6kq6we77z.png)
Hence,
![x=7](https://img.qammunity.org/2023/formulas/mathematics/college/zq1e40da7ft5m7vp2pp4z6wy99lb3uqekj.png)
Therefore, the solution for
are:
![x=7,\:y=-5](https://img.qammunity.org/2023/formulas/mathematics/high-school/tqdkwowi9x2v8szl6ivivul2l1sjfttume.png)
xcookiex12
8/19/2022