90,877 views
45 votes
45 votes
When a polynomial 2x^3+3x^2+kx+4 leaves a remainder 2(4-k) when divided by (x-2), find the value of k.​

User Conca
by
2.7k points

2 Answers

24 votes
24 votes

Answer:


k = -6.

Explanation:

Apply long division:


\begin{aligned}&amp; \;\;\phantom{2\, x^(3) + } 2\, x^(2) + 7\, x + (k + 14)\\ &amp; \, \begin{aligned} x - 2 &amp; \\[-1.7em] &amp; \overline{ \begin{aligned}\smash{)}&amp; 2\, x^(3) + 3\, x^(2) + k\, x + 4 \\[-0.5em] &amp; 2\, x^(3) - 14 \\ &amp;\overline{\phantom{2\, x^(3) + }\begin{aligned} &amp; 7\, x^(2) - k\, x \\[-0.5em] &amp; 7\, x^(2) - 14\, x \\ &amp; &nbsp;\overline{\begin{aligned} \phantom{7\, x^(2) \phantom{7\, x^(2)}} &amp;(k + 14)\, x + 4 \\[-0.5em] &amp; (k + 14)\, x- 2\, (k + 14) \\ &amp; \overline{\phantom{(k </p><p>+ 14)\, x +}2\, k + 32\quad}\end{aligned}}\end{aligned}}\end{aligned}}\end{aligned}\end{aligned}

In other words:


\begin{aligned} &amp; 2\, x^(3) + 3\, x^(2) + k\, x + 4 \\ =\; &amp; (x - 2)\, (2\, x^(2) + 7\, x + (k + 14)) + (2\, k + 32)\end{aligned}.

The remainder is
(2\, k + 32).

The question states that this remainder may also be expressed as
2\, (4 - k). Equate these two expressions for the remainder and solve for
k:


2\, k + 32 = 2\, (4 - k).


k = -6.

Substitute
k = -6 back into expand the expression
(x - 2)\, (2\, x^(2) + 7\, x + (k + 14)) + (2\, k + 32). Expand and verify that the expression indeed matches
(2\, x^(3) + 3\, x^(2) + k\, x + 4) with
k = -6\!.


\begin{aligned} &amp; (x - 2)\, (2\, x^(2) + 7\, x + (k + 14)) + (2\, k + 32) \\ =\; &amp;2\, x^(3) + 7\, x^(2) + 8\, x\\ &amp;\quad\quad - 4\, x^(2) -14\, x - 16 + 20 \\ =\; &amp; 2\, x^(3) + 3\, x^(2) - 6\, x + 4 \end{aligned}.

User Llamerr
by
2.8k points
19 votes
19 votes

Remainder Theorem

Answers:


k = -6

Explanation:

According to the Remainder Theorem, if we divide a polynomial,
P(x), by
x -\blue a, the remainder is
P(\blue a).

We can let
P(x) = 2x^3 +3x^2 +kx +4. If we want our remainder to be
2(4 -k) when we divide
P(x) by
x -\blue 2, then
P(\blue 2) = 2(4 -k)

Solving for
k:


P(\blue 2) = 2(4 -k) \\ 2(\blue 2)^3 +3(\blue 2)^2 +k(\blue 2) +4 = 2(4 -k) \\ 2(8) +3(4) +2k +4 = 2(4 -k) \\ 16 +12 +2k +4 = 8 -2k \\ 32 +2k = 8 -2k \\ 32 +2k +2k = 8 \\ 32 +4k = 8 \\ 4k = 8 -32 \\ 4k = -24 \\ k = (-24)/(4) \\ k = -6

The value of
k is
-6

User Douglaz
by
3.2k points