a. Note that
is continuous for all
. If
attains a maximum at
, then
. Compute the derivative of
.
![f'(x) = nx^(n-1) e^(-2x) - 2x^n e^(-2x)](https://img.qammunity.org/2023/formulas/mathematics/college/qz92m427lc23bij78uy5or7x60htnh0nwu.png)
Evaluate this at
and solve for
.
![n\cdot3^(n-1) e^(-6) - 2\cdot3^n e^(-6) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/pvp1eiul8e4q02hn8cr7833l4zmutr3ejg.png)
![n\cdot3^(n-1) = 2\cdot3^n](https://img.qammunity.org/2023/formulas/mathematics/college/jyxpgxgxrn8vfysvnbwxtriwyegpy1ik25.png)
![\frac n2 = (3^n)/(3^(n-1))](https://img.qammunity.org/2023/formulas/mathematics/college/d00vut67yy7jnhj2b1szga960f11g65ydy.png)
![\frac n2 = 3 \implies \boxed{n=6}](https://img.qammunity.org/2023/formulas/mathematics/college/ftnipp3peiggg4sx2dxrso8wkyedb6glf3.png)
To ensure that a maximum is reached for this value of
, we need to check the sign of the second derivative at this critical point.
![f(x) = x^6 e^(-2x) \\\\ \implies f'(x) = 6x^5 e^(-2x) - 2x^6 e^(-2x) \\\\ \implies f''(x) = 30x^4 e^(-2x) - 24x^5 e^(-2x) + 4x^6 e^(-2x) \\\\ \implies f''(3) = -(486)/(e^6) < 0](https://img.qammunity.org/2023/formulas/mathematics/college/55w2021jigcljtyfnl01y5zgj3ehtn03sc.png)
The second derivative at
is negative, which indicate the function is concave downward, which in turn means that
is indeed a (local) maximum.
b. When
, we have derivatives
![f(x) = x^4 e^(-2x) \\\\ \implies f'(x) = 4x^3 e^(-2x) - 2x^4 e^(-2x) \\\\ \implies f''(x) = 12x^2 e^(-2x) - 16x^3e^(-2x) + 4x^4e^(-2x)](https://img.qammunity.org/2023/formulas/mathematics/college/6tjlddgjmwm67s6kxnbmkf0ikxtxoyjclk.png)
Inflection points can occur where the second derivative vanishes.
![12x^2 e^(-2x) - 16x^3 e^(-2x) + 4x^4 e^(-2x) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/2ir45m1lpacimpb61lzikczh2whhpfxbvb.png)
![12x^2 - 16x^3 + 4x^4 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/u7ebeloxqs09cg3y8yk3ijgnkcykzpg00c.png)
![4x^2 (3 - 4x + x^2) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/4obr90oaiba1a7an8f3lqfh5od4i9lx9vk.png)
![4x^2 (x - 3) (x - 1) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/jnk3g15h5icwmi8xps22nvgrcsss6f2oyi.png)
Then we have three possible inflection points when
,
, or
.
To decide which are actually inflection points, check the sign of
in each of the intervals
,
,
, and
. It's enough to check the sign of any test value of
from each interval.
![x\in(-\infty,0) \implies x = -1 \implies f''(-1) = 32e^2 > 0](https://img.qammunity.org/2023/formulas/mathematics/college/aqngw3bbzlrufgh174nyd60hfs3zfpv4qs.png)
![x\in(0,1) \implies x = \frac12 \implies f''\left(\frac12\right) = \frac5{43} > 0](https://img.qammunity.org/2023/formulas/mathematics/college/ilm0sv6aglypk9ie3u2amqzaelw9yd6qi4.png)
![x\in(1,3) \implies x = 2 \implies f''(2) = -(16)/(e^4) < 0](https://img.qammunity.org/2023/formulas/mathematics/college/s304iunl5zoks4gedlxfj1bp1zgnihp6s7.png)
![x\in(3,\infty) \implies x = 4 \implies f''(4) = (192)/(e^8) > 0](https://img.qammunity.org/2023/formulas/mathematics/college/gci7o0pn7wrnaqal8ax69fszrtqfealf47.png)
The sign of
changes to either side of
and
, but not
. This means only
and
are inflection points.