Answer:
![\overline{x}=(59+8x)/(8+x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fz1m0y40gvqhtkfmyl1kr0ph4fe6x5jqi9.png)
Explanation:
Mean: The sum of all data values divided by the total number of data values.
Create a frequency table with the given information.
Label Price as "x" and Frequency as "f".
Add an "fx" column and enter the values of f multiplied by x.
Add a "Total" row and enter the total frequency and total fx.
![\begin{array}c\cline{1-3}\sf Price & \sf Frequency &\\x & f & fx\\\cline{1-3} 4.10 & 3 & 12.3 \\\cline{1-3} 4.85 & 2 & 9.7 \\\cline{1-3} 8.00 & x & 8x \\\cline{1-3} 12.00 & 1 & 12 \\\cline{1-3} 12.50 & 2 & 25 \\\cline{1-3} \sf Total & 8+x & 59+8x\\\cline{1-3}\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/anjkzw16q3ey0ilmsv9plms22lf3mab1oq.png)
The formula for the mean is:
![\boxed{\text{Mean}= \overline{x} = (\displaystyle \sum fx)/(\displaystyle \sum f)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/60p826gmrf7a0gma8x5h79ajecai1h2y9y.png)
where:
- x = data value
- f = frequency of each x
The Sigma sign means "sum".
Substitute the totals into the formula to create an expression for the mean:
![\implies \overline{x}=(59+8x)/(8+x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/iny324cv9qx06jzml29xpc9cgft006nmb9.png)