348,153 views
6 votes
6 votes
Solve the equation using the quadratic formula.
x^2+ 11x + 9 = 0
The solution set is

User Aelayeb
by
2.6k points

1 Answer

9 votes
9 votes


\huge \boxed{\mathfrak{Question} \downarrow}

Solve the equation using the quadratic formula ⇨ x² + 11x + 9 = 0


\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}


\sf \: x ^ { 2 } + 11 x + 9 = 0

All equations of the form
\sf\:ax^(2)+bx+c=0 can be solved using the quadratic formula:
\sf\frac{-b±\sqrt{b^(2)-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.


\sf \: x^(2)+11x+9=0

This equation is in standard form: ax² + bx + c = 0. Substitute 1 for a, 11 for b and 9 for c in the quadratic formula
\sf\frac{-b±\sqrt{b^(2)-4ac}}{2a}.


\sf \: x=\frac{-11±\sqrt{11^(2)-4* 9}}{2} \\

Square 11.


\sf \: x=(-11±√(121-4* 9))/(2) \\

Multiply -4 times 9.


\sf \: x=(-11±√(121-36))/(2) \\

Add 121 to -36.


\sf \: x=(-11±√(85))/(2) \\

Now solve the equation
\sf\:x=(-11±√(85))/(2) when ± is plus. Add -11 to √85.


\boxed{ \boxed{\bf \: x=(√(85)-11)/(2) }}

Now solve the equation
\sf\:x=(-11±√(85))/(2) when ± is minus. Subtract √85 from -11.


\boxed{ \boxed{\bf \: x=(-√(85)-11)/(2)} } \\

The equation is now solved. The solution set is :-


\bf \: x=(√(85)-11)/(2) \\ \\ \sf \: and \\ \\ \bf \: x=(-√(85)-11)/(2)

User Heron Rossi
by
3.5k points