117k views
0 votes
Questions 11-14
maths functions

Questions 11-14 maths functions-example-1
User Jonni
by
8.8k points

1 Answer

7 votes

Answer:

11)
\sf \left(-\infty \:,\:\infty \:\right)

12)
\sf x > 0 or
\sf \left(0,\:\infty \:\right)

13)
\sf x < 0 or
\sf \left(-\infty \:,\:0\right)

14)
\sf x\ge \:0 or
\sf \:[0,\:\infty \:)

Step-by-step explanation:

(11)


f(x) > -2


\sf ((1)/(2) )^x - 2 > -2


\sf ((1)/(2) )^x > -2+2


\sf ((1)/(2) )^x > 0

This statement is applicable for all value of x.


\left(-\infty \:,\:\infty \:\right)

(12)


g(x) < -2


\sf -(2)/(x) -2 < -2


\sf -(2)/(x) < -2 + 2


\sf -(2)/(x) < 0


\sf (1)/(x) > 0


\sf x > 0

(13)


f(x) > -1


\sf ((1)/(2) )^x - 2 > -1


\sf ((1)/(2) )^x > -1+2


\sf ((1)/(2) )^x > 1


\sf ln(((1)/(2) )^x) > ln(1)


\sf xln((1)/(2) ) > ln(1)


\sf x < ln(1)/ ln((1)/(2) )


\sf x < 0

(14)


-2 < f(x) < -1

1st


\sf -2 < ((1)/(2) )^x - 2


\sf 0 < ((1)/(2) )^x

True for all x

2nd


\sf ((1)/(2) )^x - 2 \leq -1


\sf ((1)/(2) )^x \leq 1


\sf x \geq 0

So in total,


\sf x\ge \:0

These solution's can be found by determining them graphically.

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories