117k views
0 votes
Questions 11-14
maths functions

Questions 11-14 maths functions-example-1
User Jonni
by
3.7k points

1 Answer

7 votes

Answer:

11)
\sf \left(-\infty \:,\:\infty \:\right)

12)
\sf x > 0 or
\sf \left(0,\:\infty \:\right)

13)
\sf x < 0 or
\sf \left(-\infty \:,\:0\right)

14)
\sf x\ge \:0 or
\sf \:[0,\:\infty \:)

Step-by-step explanation:

(11)


f(x) > -2


\sf ((1)/(2) )^x - 2 > -2


\sf ((1)/(2) )^x > -2+2


\sf ((1)/(2) )^x > 0

This statement is applicable for all value of x.


\left(-\infty \:,\:\infty \:\right)

(12)


g(x) < -2


\sf -(2)/(x) -2 < -2


\sf -(2)/(x) < -2 + 2


\sf -(2)/(x) < 0


\sf (1)/(x) > 0


\sf x > 0

(13)


f(x) > -1


\sf ((1)/(2) )^x - 2 > -1


\sf ((1)/(2) )^x > -1+2


\sf ((1)/(2) )^x > 1


\sf ln(((1)/(2) )^x) > ln(1)


\sf xln((1)/(2) ) > ln(1)


\sf x < ln(1)/ ln((1)/(2) )


\sf x < 0

(14)


-2 < f(x) < -1

1st


\sf -2 < ((1)/(2) )^x - 2


\sf 0 < ((1)/(2) )^x

True for all x

2nd


\sf ((1)/(2) )^x - 2 \leq -1


\sf ((1)/(2) )^x \leq 1


\sf x \geq 0

So in total,


\sf x\ge \:0

These solution's can be found by determining them graphically.