156k views
2 votes
Prove that :

Q1) log 630 = log 2 + 2log 3 + log 5 + log 7
Q2) log 10+ log 100+ log 1000+ log 10000 = 10​

User Ehmad
by
4.0k points

2 Answers

4 votes

Number 1

log 630

=log (2×3×3×5×7)

=log2+log 3^2-log 5+log7

= log 2+2 log 3 + log 5 + log 7

Number 2

log 10+ log 100+ log 1000+ log 10000

= log 10+2 log 10+ 3 log 10+ 4 log 10

= 10 log 10

= 10

User Lashanda
by
3.6k points
2 votes


\bigstar \: {\large{\textsf{\textbf{\underline{\underline{Concept :}}}}}}

Some of the properties of the log are as follows :

1) Product law -


\star \: \sf log(mnp) = \underline{{\boxed{{\sf logm +logn + logp}}}}

2) Division law -


\star \: \sf log( (m)/(n) ) = \underline{{\boxed{{\sf logm - logn }}}}

3) Power law -


\star \: \sf log \: {m}^(n) = \underline{{\boxed{{\sf n \: log m }}}}

4) We should also know that -


\star \: \sf log 10 = \underline{{\boxed{{\sf 1 }}}}

• To prove R.H.S equals to L.H.S, there exists three conditions :

1) To make R.H.S equals to L.H.S

2) To make L.H.S equals to R.H.S

3) To simplify both side equations and make them equal to a single value

In proving these questions, we're going to apply 2nd condition though all the three conditions described above are convertible to each other.

Now, let's start!


\: {\large{\textsf{\textbf{\underline{\underline{Solution:}}}}}}


\sf \red{ Question\: 1}

Taking L.H.S


\sf log630

✦ Prime factors of 630 -


\begin{gathered}\begin{gathered}{\begin{array}c2&630 \\ \hline 3&315 \\ \hline 3&105\\ \hline5&35 \\ \hline 7&7\\ \hline &1\end{array}}\end{gathered}\end{gathered}


\implies \sf log(2 * {3}^(2) * 5 * 7)

• Using first property


\implies \sf log2 + \underline{log {3}^(2) }+ log5 + log 7

• Using third property


\implies \sf log2 +2 \: log3 + log5 + log 7


\therefore \: \sf log630 = \underline{{\boxed{ \red{{\sf log2+2 \: log3 + log5 + log7}}}}}


\sf \green{ Question\: 2}

Taking L.H.S


\sf log10 + log100 + log1000 + log10000


\implies \sf log10 + log {10}^(2) + log {10}^(3) + log {10}^(4)

• Using third property


\implies \sf log10 +2 \: log 10 + 3 \: log 10 + 4 \: log 10

• As we know log10 = 1


\implies \sf 1+2 (1) + 3 (1)+ 4 (1)


\implies \sf 1+2 + 3 + 4


\implies \sf \green{10}


\therefore \: \sf log10 + log100 + log1000 + log10000= \underline{{\boxed{ \green{{\sf 10}}}}}


\rule{280pt}{2pt}

User Dean Rather
by
4.5k points