140k views
1 vote
Please help me with my homework


\bf{(x+9)^5}

Thank you

User Joergl
by
7.9k points

2 Answers

1 vote

Answer:

x⁵+ 45x⁴+ 810x³+ 7290x²+ 32805x +59049

Explanation:

Greetings !

Given expression


(x + 9) {}^(5)

write 5 as a sum


(x + 9) {}^(3 + 2)


use \: a {}^(m + n) = a {}^(m) * a {}^(n) to \: expand \: the \: expression.


(x + 9) {}^(3) * (x + 9) {}^(2)

Use (a+b)³=a³+3a²b+b³ to expand the expression


(x {}^(3) + 27x {}^(2) + 243x + 729) * (x + 9) {}^(2)

Use (a+b)²=a²+2ab+b² to the second expression to expand it


(x {}^(3) + 27x {}^(2) + 243x + 729) *(x {}^(2) + 18x + 81)

Finally, simplify the expression gives


x {}^(5) + 45x {}^(4) + 810x {}^(3) + 7290x {}^(2) + 32805x + 59049

Hope it helps!

User Pattmorter
by
8.2k points
5 votes

Answer:


\sf x^5 + 45x^4 + 810x^3 + 7290x^2 + 32805x + 59049

Given expression:


\bf (x+ 9)^5

Use Binomial expression to completely simplify the following expression.

Binomial expression formula:


\sf \large \text{ $ \sf (x+y)^n = \ ^n C_0 x^n y^0 + ^n C_1 x^(n-1) y^1+^n C_2 x^(n-2) y^2 +... + ^n C_n x^0 y^n $}

Solving steps:


\sf \large \text{ $ \sf (x+9)^5 $}

expanding:


\sf \ ^5 C_0 (x)^5 (9)^0 + ^5 C_1 (x)^(5-1) (9)^1+ ^5 C_2 x^(5-2) (9)^2 +^5 C_3 x^(5-3) (9)^3 +^5 C_4 x^(5-4) (9)^4 + ^5 C_5 x^(5-5) (9)^5

calculating:


\sf x^5 + 45x^4 + 810x^3 + 7290x^2 + 32805x + 59049

User Mossroy
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories