132k views
3 votes
Seis grifos, tardan 10 horas en llenar un

depósito de 400m^3 de capacidad. ¿Cuántas
horas tardarán cuatro grifos en llenar 2
depósitos de 500m^3 cada uno?

User Skewled
by
8.1k points

1 Answer

3 votes

6 taps....10 h......400 m³

4 taps......x h....1000 m³ (2 tanks)(500m³)

The different magnitudes are related to the magnitude of the unknown,

considering in each relationship that the magnitudes that do not intervene they remain constant in it.

So:

6 taps.....10h

4 faucets.......x h

The LESS taps, the MORE hours it will take. Inverse proportionality.


\boldsymbol{\sf{(10)/(x)=(4)/(6) \ \ (Reverse) }}

400 m³......10h

1000 m³........xh

The MORE , the MORE hours will be needed. Direct proportionality.


\boldsymbol{\sf{(10)/(x)=(400)/(1000) \ \ (Direct) }}

Considering that, in general, none of the magnitudes remains

1 constant, it is verified that:


\boldsymbol{\sf{(4)/(100)=((4)/(6))((400)/(1000) ) }}

From where


\boldsymbol{\sf{(10)/(x)=((4)(400))/((6)(1000)) }}


\boldsymbol{\sf{x=((10)(6)(1000))/((4)(400) )=(6000)/(1600)=\boxed{\boldsymbol{\sf{37.5}}} }}

Answer: It will take 37.5 hours. That is: 37 hours and 30 minutes.

User Sohnryang
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories