The domain of integration is a circular sector subtended by an angle of 3π/4 radians, belonging to a circle of radius 3.
The first integral is taken over the left half of the upper semicircle.
![\left(\frac\pi2 \le \theta \le \pi\right)](https://img.qammunity.org/2023/formulas/mathematics/college/xxkjiateyi2t8czrthxqptj3t6uujuq871.png)
The second integral is taken over a sector belonging to the right half of the same semicircle. Notice that the line
meets the semicircle
when
![x = √(9-x^2) \implies x^2 = 9-x^2 \implies x = \frac3{\sqrt2}](https://img.qammunity.org/2023/formulas/mathematics/college/k0taov06n4ae83zfp13bc71e5khk4aym9g.png)
and the line
makes an angle of π/4 with the positive
-axis.
![\left(\frac\pi4 \le \theta \le \frac\pi2\right)](https://img.qammunity.org/2023/formulas/mathematics/college/g2ye24rn6dhxd0b8oue3gb7ljnehovlcy8.png)
Then the two integrals combine into one integral in polar coordinates, and
![\displaystyle \int_(-3)^0 \int_0^(√(9-x^2)) √(x^2+y^2) \, dy \, dx + \int_0^(3/\sqrt2) \int_0^(√(9-x^2)) √(x^2+y^2) \, dy \, dx \\\\ ~~~~~~~~ = \int_(\pi/4)^\pi \int_0^3 √(r^2)\,r\,dr\,d\theta \\\\ ~~~~~~~~ = \frac{3\pi}4 \int_0^3 r^2 \, dr = \boxed{\frac{27\pi}4}](https://img.qammunity.org/2023/formulas/mathematics/college/1y2mll7kkv2vn4jdoboes6q8r3fjd932jk.png)