Answer:
2x(sinx^2 + x^2cosx^2).
Explanation:
We use the product rule:
If u and v are functions of x then:-
d(uv)/dx = u dv/dx + v du/dx
So:
d(x^2 sinx^2)dx
= x^2 * d(sinx^2)/dx + sinx^2 * d(x^2)/dx
= x^2 * 2xcosx^2 + sinx^2 * 2x
= 2x^3cosx^2 + 2xsinx^2
= 2x(sinx^2 + x^2cosx^2).