75.0k views
0 votes
Use the binomial expansion and approximation to find √3​

User Rajahsekar
by
5.2k points

1 Answer

4 votes

We have the binomial series


(1 + x)^\alpha = \displaystyle \sum_(k=0)^\infty \binom \alpha k x^k \\\\ \implies √(1+x) = 1 + \frac x2 - \frac{x^2}8 + (x^3)/(16) - (5x^4)/(128) + \cdots

valid for
|x|<1, where


\dbinom \alpha k = (\alpha (\alpha-1)(\alpha-2)\cdots(\alpha-(k-1)))/(k!)

We would get √3 on the left by replacing
x=2, but sadly that's outside the radius of convergence of the series on the right...

However, playing around with √3 we can write


\sqrt3 = \sqrt{(3m^2)/(m^2)} = \frac1m √(3m^2) = \frac1m √(n^2 + (3m^2-n^2)) = \frac nm \sqrt{1 + (3m^2-n^2)/(n^2)}

for some positive integers
m,n.

If we choose reasonable values of
m,n such that


|x| = \left|(3m^2 - n^2)/(n^2)\right| = \left|(3m^2)/(n^2) - 1\right| < 1 \\\\ \implies 0 < (m^2)/(n^2) < \frac23

we can then apply the binomial series to get - say, for the first 3 terms -


\displaystyle \sqrt3 \approx \frac nm \left(1 + \frac x2 - \frac{x^2}8\right)

For example, we can try


\sqrt3 = \sqrt{(3\cdot3^2)/(3^2)} = \frac1{3} √(27) = \frac1{3} √(25 + 2) = (5)/(3) \sqrt{1 + \frac2{25}}

so that
(m,n) = (3,5) and
x=\frac2{25}. Then the series gives the approximation


\displaystyle \sqrt3 \approx \frac53 \left(1 + \frac12\left(\frac2{25}\right) - \frac18\left(\frac2{25}\right)^2\right) \\\\ \implies \sqrt3 \approx (433)/(250) = \underline{1.732}

Compare this to the more accurate value of


\sqrt3 \approx 1.732050807568877293527446

which tells us we're off by an error of less than
10^(-3).

As another example,


\sqrt3 = \sqrt{(3\cdot7^2)/(7^2)} = \frac17 √(147) = \frac17 √(144 + 3) = \frac{12}7 \sqrt{1 + \frac3{144}} = \frac{12}7 \sqrt{1 + \frac1{48}}

which gives


\displaystyle \sqrt3 \approx \frac{12}7 \left(1 + \frac12\left(\frac1{48}\right) - \frac18\left(\frac1{48}\right)^2\right) \\\\ \implies \sqrt3 \approx (18623)/(10752) = \underline{1.7320}49851190476190476190

One more example for good measure:


\sqrt3 = \sqrt{(3\cdot11^2)/(11^2)} = \frac1{11} √(363) = \frac1{11} √(361 + 2) = (19)/(11) \sqrt{1 + \frac2{361}}

Then


\displaystyle \sqrt3 \approx (19)/(11) \left(1 + \frac12\left(\frac2{361}\right) - \frac18\left(\frac2{361}\right)^2\right) \\\\ \implies \sqrt3 \approx (261363)/(150898) \approx \underline{1.732050}789274874418481358

User StandardNerd
by
6.1k points