Answer:
![\Large\boxed{(-4,~-3)~\text{and}~(-2,~1)}](https://img.qammunity.org/2023/formulas/mathematics/college/in716jkkcdqk3witqkw6gzmvqxwognfm7b.png)
Explanation:
Given the system of equation
![1)~y=-(x+2)^2+1](https://img.qammunity.org/2023/formulas/mathematics/college/tcalybsr0gb3try6pwyhvc9frygc7ewmdu.png)
![2)~y=2x+5](https://img.qammunity.org/2023/formulas/mathematics/college/iz4e2wcwmgvgpsh47mfhnfkan3k25v72a7.png)
Expand the parenthesis of the 1) equation
![y=-(x+2)^2+1](https://img.qammunity.org/2023/formulas/mathematics/college/fg7icusf8w5ft1og9mixk0oefz65klq011.png)
![y=-(x^2+4x+4)+1](https://img.qammunity.org/2023/formulas/mathematics/college/oivxsbfl0r67nguztab3dxm5a8kanrehj7.png)
![y=-x^2-4x-4+1](https://img.qammunity.org/2023/formulas/mathematics/college/xeug0b5aq73qgo15oisb7rsr63lqs77xt8.png)
![y=-x^2-4x-3](https://img.qammunity.org/2023/formulas/mathematics/college/c0gbq9mriurpyaw4775kv5zztrzagk7vw5.png)
Current System
![1)~y=-x^2-4x-3](https://img.qammunity.org/2023/formulas/mathematics/college/t8ylquev4y2xix16lknhp00ybxp4ylafdz.png)
![2)~y=2x+5](https://img.qammunity.org/2023/formulas/mathematics/college/iz4e2wcwmgvgpsh47mfhnfkan3k25v72a7.png)
Substitute the y value of the 1) equation with the 2) equation
![2x+5=-x^2-4x-3](https://img.qammunity.org/2023/formulas/mathematics/college/cp9kv9bhszr74dqg4f3qlkq894x5w44ut1.png)
Add ( x² + 4x + 3) on both sides
![2x+5+(x^2+4x+3)=-x^2-4x-3+(x^2+4x+3)](https://img.qammunity.org/2023/formulas/mathematics/college/eztgf17nnmr9482hu368f6cgsf6e8aesdu.png)
![2x+5+x^2+4x+3=0](https://img.qammunity.org/2023/formulas/mathematics/college/rfn7gfsxafb5e6m5zmyqz1rz1iwp6l1rxh.png)
Combine like terms
![x^2+2x+4x+5+3=0](https://img.qammunity.org/2023/formulas/mathematics/college/ihsnpv9yb7wcwibdw9s7o0sdtmw9vx3t7n.png)
![x^2+6x+8=0](https://img.qammunity.org/2023/formulas/mathematics/college/p02769y426tfzvacpxjtxbkhej93il5o3v.png)
Factorize the quadratic equation
![(x+4)(x+2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/nlq23f7q0ldhnvxzm5t3nc7j2c9ubtzqox.png)
![x=-4~\text{or}~x=-2](https://img.qammunity.org/2023/formulas/mathematics/college/qkfdjgr9fdy15nbp3sl7jdyjog8k2pdz3e.png)
Substitute the x values into one of the equations to find the y value
![y=2x+5](https://img.qammunity.org/2023/formulas/mathematics/college/qz6sm2qok56u07bywkqdeu10nr1b8ijgr3.png)
![y=2(-4)+5=-8+5=-3](https://img.qammunity.org/2023/formulas/mathematics/college/sdsbdecx07c28ix1qze3tw1f3qwe94279x.png)
![y=2(-2)+5=-4+5=1](https://img.qammunity.org/2023/formulas/mathematics/college/yt4fnc2wjwlq2ndrrfe14wprbg749mxdjs.png)
Therefore, the two solutions are:
![\Large\boxed{(-4,~-3)~\text{and}~(-2,~1)}](https://img.qammunity.org/2023/formulas/mathematics/college/in716jkkcdqk3witqkw6gzmvqxwognfm7b.png)
Hope this helps!! :)
Please let me know if you have any questions