(a) If
lies on both planes, then
![y=z=0 \implies 3x = 3 \implies \boxed{x=1}](https://img.qammunity.org/2023/formulas/mathematics/college/p4n0j9punnhcgt8wd8qhl69vzibiht4744.png)
and at the same time
![2x = 2 \implies x=1](https://img.qammunity.org/2023/formulas/mathematics/college/z74mtw1so9d5akowtiv7jb2i2eg4x727ln.png)
(b) A plane with normal vector
containing the point
can be written in the form
![\vec n \cdot \langle x - a, y - b, z - c \rangle = 0](https://img.qammunity.org/2023/formulas/mathematics/college/h4ic9xbnwjy6m9ljiec4jsryn1cvbkwgn4.png)
Expanding the left side, we see that the components of
correspond to the coefficients of
. So the normal vector to
is
.
(c) Similarly, the normal to
is
.
(d) The cross product of any two vectors
and
is perpendicular to both of the vectors. So we have
![\vec n_1 * \vec n_2 = \boxed{\langle 14, 2, 15\rangle}](https://img.qammunity.org/2023/formulas/mathematics/college/6t9ysp4um61geh3xi90j8xlp8ivl7aiz81.png)
(e) Solve the two plane equations for
.
![3x - 6y - 2z = 3 \implies 2z = 3x - 6y - 3](https://img.qammunity.org/2023/formulas/mathematics/college/xrorfriyl3odsxf7dhuoebohk2f89quwvc.png)
![2x + y - 2z = 2 \implies 2z = 2x + y - 2](https://img.qammunity.org/2023/formulas/mathematics/college/2pwdw4p4zi1plw4swwqr0p6ve06dbx622s.png)
By substitution,
![3x - 6y - 3 = 2x + y - 2 \implies x = 7y + 1](https://img.qammunity.org/2023/formulas/mathematics/college/w99s25mgtv5gpwofj5xkjjrebu3uv0zsty.png)
Let
. Then
and
![2z = 3(7t+1) - 6t - 3 \implies 2z = 15t \implies z = \frac{15}2t](https://img.qammunity.org/2023/formulas/mathematics/college/k804j6manolm1mp3jbxsimz6cksio1c3un.png)
Then the intersection can be parameterized by equations
![\begin{cases} x(t) = 7t + 1 \\\\ y(t) = t \\\\ z(t) = \frac{15}2 t \end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/9vh4laj2tleb2fcxxs5quzu0z2teta2s4o.png)
for
.
We can also set
or
first, then solve for the other variables in terms of the parameter
, so this is by no means a unique parameterization.