Answer:
A
Explanation:
Linear approximation is basically using the equation of a tangent line to approximate values of f.
For example
we have function
![(x + 1) {}^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/aw3xrnl7pduus0ecwz5myb482j3882t70m.png)
First, things first, let take the derivative to get the gradient function.
![(d)/(dx) (x + 1) {}^(2) = 2(x + 1)(1) = 2(x + 1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pidg7kpqg57p8om38jzf5xie2gtpeph9ar.png)
Note: I used the chain rule.
so we get
![2(x + 1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/f3hzgifbd77unc0l3bfov0176rqg6njyoy.png)
Now, notice the formula for tangent approximation.
![f(x) = f(a) + f'(a)(x - a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6f7mj7ibzz443fo9j7y8k8tg62p2rjtn9s.png)
Here x=7.8
a is 8 so we get
![f(7.8) = f(8) + f'(8)(7.8 - 8)](https://img.qammunity.org/2023/formulas/mathematics/high-school/trr7ae5p0wyuahf2d3g62ixkxwv8lp3x5g.png)
To find f(8), plug 8 into the original function for x.
![(8 + 1) {}^(2) = 81](https://img.qammunity.org/2023/formulas/mathematics/high-school/2hw732sp1wghfvgkj8hb6ir5jusvhqk3qy.png)
To find f'(8), plug 8 into the derivative function.
![2(8 + 1) = 18](https://img.qammunity.org/2023/formulas/mathematics/high-school/156hjrvtona8d0vddrvvhtzj7vmxgs26w5.png)
So we get
![f(7.8) = 81 + 18( - 0.2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/j2nnvzgl6l1gkcfe13mj3jjj39rohd9sd2.png)
![f(7.8) = 81 - 3.6](https://img.qammunity.org/2023/formulas/mathematics/high-school/jby4dwhf1cygx0c1z4bcpttecipkb8newy.png)
![f(7.8) = 77.4](https://img.qammunity.org/2023/formulas/mathematics/high-school/py1a97tzhsk3k2mnxogp7zp2gew40en7dm.png)