(i) Yes. Simplify
.
![\displaystyle (x^2 - x^2y^2 + y^2)/(x^2 + y^2) = 1 - (x^2y^2)/(x^2 + y^2)](https://img.qammunity.org/2023/formulas/mathematics/college/nqx3a6d13n48esjv16onpvccyuufyuh2n0.png)
Now compute the limit by converting to polar coordinates.
![\displaystyle \lim_((x,y)\to(0,0)) (x^2y^2)/(x^2+y^2) = \lim_(r\to0) (r^4 \cos^2(\theta) \sin^2(\theta))/(r^2) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/kxg200z4wp2a1tiqxzzyyxaa086bwpsn36.png)
This tells us
![\displaystyle \lim_((x,y)\to(0,0)) f(x,y) = 1](https://img.qammunity.org/2023/formulas/mathematics/college/3z4hp5p17z17y8u0wzi6qq009tm2lc2rva.png)
so we can define
to make the function continuous at the origin.
Alternatively, we have
![(x^2y^2)/(x^2+y^2) \le (x^4 + 2x^2y^2 + y^4)/(x^2 + y^2) = ((x^2+y^2)^2)/(x^2+y^2) = x^2 + y^2](https://img.qammunity.org/2023/formulas/mathematics/college/u9vkh87vc0x903d50wdg4pu2saeryy4y2l.png)
and
![(x^2y^2)/(x^2+y^2) \ge 0 \ge -x^2 - y^2](https://img.qammunity.org/2023/formulas/mathematics/college/hvueeevlfenkoskjo7c523tcjizlt2f7n7.png)
Now,
![\displaystyle \lim_((x,y)\to(0,0)) -(x^2+y^2) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/25dnj90djw1ufxv9cj1ipalfl6t4gtyf7a.png)
![\displaystyle \lim_((x,y)\to(0,0)) (x^2+y^2) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/xyghci5lgqh82s0kyckgowrm8whfehwn6d.png)
so by the squeeze theorem,
![\displaystyle 0 \le \lim_((x,y)\to(0,0)) (x^2y^2)/(x^2+y^2) \le 0 \implies \lim_((x,y)\to(0,0)) (x^2y^2)/(x^2+y^2) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/79gmrks5ekmyzja81srntaviz2c7uq8oxx.png)
and
approaches 1 as we approach the origin.
(ii) No. Expand the fraction.
![\displaystyle (x^2 + y^3)/(xy) = \frac xy + \frac{y^2}x](https://img.qammunity.org/2023/formulas/mathematics/college/5ed3kvrad735ngcfyzg45mel8h8c9w8o2n.png)
and
are undefined, so there is no way to make
continuous at (0, 0).
(iii) No. Similarly,
![\frac{x^2 + y}y = \frac{x^2}y + 1](https://img.qammunity.org/2023/formulas/mathematics/college/ni1qyblakv7o0fekqef2op4khy3xdeo7rz.png)
is undefined when
.