![Answer:\large\boxed{y=(2)/(3) x+6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hmqwzikmi4ny1lctbn5dawmj0mqy20nxk7.png)
Explanation:
First let's convert 2x - 3y = 12 into
form.
In order to do this, solve for y.
![2x-3y=12](https://img.qammunity.org/2023/formulas/mathematics/high-school/3ytwgjqql21hvyhexgp1w7qyfk3on7e0k8.png)
![-3y=-2x+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/k6r9xa5fgv6e7zyx8o7j9a7h6vgh7h1x8b.png)
![y=(2)/(3) x-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/7j6x88g98d8zy63v90icfzzw6bfntozufm.png)
This shows us that the slope is
![\boxed{(2)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/le18jyg1c0tkva7owjni39crs2w09ahm8b.png)
Now we use the point-slope formula:
![(y-y1)=m(x-x1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/uxo30tp44r8sh6h6j6gxkc9cyoc9skq39n.png)
where m is the slope and y1 and x1 are the point the line passes through
Using the point (-6,2) and slope, 2/3, we can find the equation:
![(y-2)=(2)/(3) (x-(-6))](https://img.qammunity.org/2023/formulas/mathematics/high-school/g5usk21mo92y30usojazzj86md8hkxr0w0.png)
![(y-2)=(2)/(3) (x+6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/adlyc7wn6dasjys0r6iwk2hhyc2y7em8mh.png)
![(y-2)=(2)/(3) x+4](https://img.qammunity.org/2023/formulas/mathematics/high-school/m4noj3glhgnvdw8pl4kybel433cgn0qgsz.png)
![\large\boxed{y=(2)/(3) x+6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xm8nzruufhjspy93fpj37lhzcgnbe4ii4m.png)