225k views
1 vote
Calculus 3 help please.​

Calculus 3 help please.​-example-1
User Jhowe
by
4.2k points

1 Answer

2 votes

I assume each path
C is oriented positively/counterclockwise.

(a) Parameterize
C by


\begin{cases} x(t) = 4\cos(t) \\ y(t) = 4\sin(t)\end{cases} \implies \begin{cases} x'(t) = -4\sin(t) \\ y'(t) = 4\cos(t) \end{cases}

with
-\frac\pi2\le t\le\frac\pi2. Then the line element is


ds = √(x'(t)^2 + y'(t)^2) \, dt = √(16(\sin^2(t)+\cos^2(t))) \, dt = 4\,dt

and the integral reduces to


\displaystyle \int_C xy^4 \, ds = \int_(-\pi/2)^(\pi/2) (4\cos(t)) (4\sin(t))^4 (4\,dt) = 4^6 \int_(-\pi/2)^(\pi/2) \cos(t) \sin^4(t) \, dt

The integrand is symmetric about
t=0, so


\displaystyle 4^6 \int_(-\pi/2)^(\pi/2) \cos(t) \sin^4(t) \, dt = 2^(13) \int_0^(\pi/2) \cos(t) \sin^4(t) \,dt

Substitute
u=\sin(t) and
du=\cos(t)\,dt. Then we get


\displaystyle 2^(13) \int_0^(\pi/2) \cos(t) \sin^4(t) \, dt = 2^(13) \int_0^1 u^4 \, du = \frac{2^(13)}5 (1^5 - 0^5) = \boxed{\frac{8192}5}

(b) Parameterize
C by


\begin{cases} x(t) = 2(1-t) + 5t = 3t - 2 \\ y(t) = 0(1-t) + 4t = 4t \end{cases} \implies \begin{cases} x'(t) = 3 \\ y'(t) = 4 \end{cases}

with
0\le t\le1. Then


ds = √(3^2+4^2) \, dt = 5\,dt

and


\displaystyle \int_C x e^y \, ds = \int_0^1 (3t-2) e^(4t) (5\,dt) = 5 \int_0^1 (3t - 2) e^(4t) \, dt

Integrate by parts with


u = 3t-2 \implies du = 3\,dt \\\\ dv = e^(4t) \, dt \implies v = \frac14 e^(4t)


\displaystyle \int u\,dv = uv - \int v\,du


\implies \displaystyle 5 \int_0^1 (3t-2) e^(4t) \,dt = \frac54 (3t-2) e^(4t) \bigg|_(t=0)^(t=1) - \frac{15}4 \int_0^1 e^(4t) \,dt \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - (15)/(16) e^(4t) \bigg|_(t=0)^(t=1) \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - (15)/(16) (e^4 - 1) = \boxed{(5e^4 + 55)/(16)}

(c) Parameterize
C by


\begin{cases} x(t) = 3(1-t)+t = -2t+3 \\ y(t) = (1-t)+2t = t+1 \\ z(t) = 2(1-t)+5t = 3t+2 \end{cases} \implies \begin{cases} x'(t) = -2 \\ y'(t) = 1 \\ z'(t) = 3 \end{cases}

with
0\le t\le1. Then


ds = √((-2)^2 + 1^2 + 3^2) \, dt = √(14) \, dt

and


\displaystyle \int_C y^2 z \, ds = \int_0^1 (t+1)^2 (3t+2) \left(√(14)\,ds\right) \\\\ ~~~~~~~~ = √(14) \int_0^1 \left(3t^3 + 8t^2 + 7t + 2\right) \, dt \\\\ ~~~~~~~~ = √(14) \left(\frac34 t^4 + \frac83 t^3 + \frac72 t^2 + 2t\right) \bigg|_(t=0)^(t=1) \\\\ ~~~~~~~~ = √(14) \left(\frac34 + \frac83 + \frac72 + 2\right) = \boxed{(107√(14))/(12)}

User Ramesh Vishnoi
by
4.2k points