33.3k views
2 votes
A ball is thrown into the air with initial velocity v(0) = 3i + 8k. The acceleration is given by

a(t) = 8j − 16k. How far away is the ball from its initial position at t = 1?

A ball is thrown into the air with initial velocity v(0) = 3i + 8k. The acceleration-example-1
User Orvin
by
5.5k points

1 Answer

3 votes

Use the fundamental theorem of calculus to find the velocity and position functions.


\displaystyle \mathbf v(t) = \mathbf v(0) + \int_0^t \mathbf a(u) \, du \\\\ ~~~~ = (3\,\mathbf i + 8\,\mathbf k) + (8\,\mathbf j - 16\,\mathbf k) \int_0^t du \\\\ ~~~~ = 3\,\mathbf i + 8t\,\mathbf j + (8-16t)\,\mathbf k

Take the starting position of the ball to be the origin, so
\mathbf r(0)=\mathbf 0.


\displaystyle \mathbf r(t) = \mathbf r(0) + \int_0^t \mathbf v(u) \, du \\\\ ~~~~ = \int_0^t \bigg(3\,\mathbf i + 8u\,\mathbf j + (8-16u)\,\mathbf k\bigg) \, du \\\\ ~~~~ = 3t\,\mathbf i + 4t^2\,\mathbf j + (8t - 8t^2)\,\mathbf k

Compute the ball's position vector at
t=1.


\mathbf r(1) = 3\,\mathbf i + 4\,\mathbf j

The distance from the ball's starting location at
\mathbf r(0) to
\mathbf r(1) is then


\|\mathbf r(1) - \mathbf r(0)\| = \|3\,\mathbf i + 4\,\mathbf j\| = √(3^2 + 4^2) = \boxed{5}

User Bungles
by
5.4k points