227k views
5 votes
Multivariable Calculus

Evaluate the following expression.

Multivariable Calculus Evaluate the following expression.-example-1
User Jgradim
by
5.4k points

1 Answer

3 votes

Convert to polar coordinates. The domain of integration is a circular arc subtended by a central angle measuring π/4 radians or 45 degrees (the angle
y=x makes with the positive
x-axis). So we have


\displaystyle \int_0^(\sqrt2) \int_0^x √(x^2+y^2) \, dy \, dx + \int_(\sqrt2)^2 \int_0^(√(4-x^2)) √(x^2+y^2) \, dy \, dx = \int_0^(\pi/4) \int_0^2 √(r^2) \, r \, dr \, d\theta

where we use


\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ x^2+y^2 = r^2 \\ dx\,dy = r\,dr\,d\theta\end{cases}

Computing the integral, we get


\displaystyle \int_0^(\pi/4) \int_0^2 r^2 \, dr\,d\theta = \frac\pi4 \int_0^2 r^2 \, dr \\\\ ~~~~~~~~ = \frac\pi4 \cdot \frac13 (2^3 - 0^3) = \boxed{\frac{2\pi}3}

User Justin Standard
by
5.5k points