67.0k views
2 votes
Let D be the pentagon with vertices in the (x, y)-plane given by

(1, −1),(−1, −1),(−2, 0),(0, 2),(2, 0). Calculate


\int\limits^._D\int\limits^._. {\\ \sin((x + y)\pi ) dxdy} \,.

ignore the dots on the integrals

User Fuso
by
3.6k points

1 Answer

5 votes

Using the provided order of integration, we can parameterize
D by


D = \left\{(x,y) \mid -1 \le y \le 2 \text{ and } \max(y-2,-y-2) \le x \le \min(-y+2,y+2)\right\}

where


\max(y-2,-y-2) = \begin{cases} -y-2 &amp; \text{when } y<0 \\ y-2 &amp; \text{when } y\ge0\end{cases}

and


\min(-y+2,y+2) = \begin{cases} y+2 &amp; \text{when } y<0 \\ -y+2 &amp; \text{when } y\ge0\end{cases}

Then we have two iterated integrals to compute,


\displaystyle \iint_D \sin((x+y)\pi) \, dA \\\\ ~~~~= \int_(-1)^0 \int_(-y-2)^(y+2) \sin((x+y)\pi) \, dx \, dy + \int_0^2 \int_(y-2)^(-y+2) \sin((x+y)\pi) \, dx\,dy

Compute the integrals with respect to
x.


\displaystyle \int_(-y-2)^(y+2) \sin((x+y)\pi) \, dx = -\cos((x+y)\pi) \bigg|_(x=-y-2)^(x=y+2) \\\\ ~~~~~~~~ = -\cos((y+2+y)\pi) + \cos((-y-2+y)\pi) \\\\ ~~~~~~~~ = 1 - \cos((y+1)2\pi)


\displaystyle \int_(y-2)^(-y+2) \sin((x+y)\pi) \, dx = -1 + \cos((y-1)2\pi)

Compute the remaining integrals.


\displaystyle \int_(-1)^0 \left(1 - \cos((y+1)2\pi)\right) \, dy = \left(y - \frac1{2\pi} \sin((y+1)2\pi)\right)\bigg|_(y=-1)^(y=0) \\\\ ~~~~~~~~ = \left(0 - \frac1{2\pi} \sin(2\pi)\right) - \left(-1 - \frac1{2\pi} \sin(0)\right) = 1


\displaystyle \int_0^2 \left(-1 + \cos((y-1)2\pi)\right) \, dy = \left(-y + \frac1{2\pi} \sin((y-1)2\pi)\right)\bigg|_(y=0)^(y=2) \\\\ ~~~~~~~~ = \left(-2 + \frac1{2\pi} \sin(2\pi)\right) - \left(0 + \frac1{2\pi} \sin(-2\pi)\right) = -2

Then the overall integral has a value of


\displaystyle \iint_D \sin((x+y)\pi) \, dA = 1 + (-2) = \boxed{-1}

Let D be the pentagon with vertices in the (x, y)-plane given by (1, −1),(−1, −1),(−2, 0),(0, 2),(2, 0). Calculate-example-1
User Oatmeal
by
3.5k points