166k views
3 votes
Σ 8 over n=1 2^n-1 ???

Σ 8 over n=1 2^n-1 ???-example-1

1 Answer

7 votes

hmmm we can approach this summation as in we can the sum of a finite geometric sequence, so


\displaystyle\sum_(n=1)^(8)~2^(n-1)\implies \sum_(n=1)^(8)~1\cdot 2^(n-1) \\\\[-0.35em] ~\dotfill\\\\ \qquad \qquad \textit{sum of a finite geometric sequence} \\\\ \displaystyle S_n=\sum\limits_(i=1)^(n)\ a_1\cdot r^(i-1)\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=\textit{last term's}\\ \qquad position\\ a_1=\textit{first term}\\ r=\textit{common ratio}\\[-0.5em] \hrulefill\\ n=8\\ a_1=1\\ r=2 \end{cases}


\displaystyle\sum_(n=1)^(8)~1\cdot 2^(n-1)\implies S_8=1\left( \cfrac{1-2^8}{1-2} \right)\implies S_8=1\left(\cfrac{-255}{-1} \right)\implies S_8=255

User Esteban Elverdin
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories