203k views
5 votes
Please explain to me how to do this

Please explain to me how to do this-example-1
User Skoky
by
4.9k points

2 Answers

3 votes

#43

  • 1+2+3+..+200
  • We may observe. 200+1=201,199+2=201,198+3=201

So

200/2=100 pairs of 201

Sum

  • 100(201)=20100

#44

  • 1+2+3+..+400

400/2=200 pairs of 401

Sum

  • 200+401
  • 80200

#45

  • 1+2+3+..+800

800/2=400 pairs of 801

Sum

  • 400(801)
  • 320400

#46

  • 1+2+3+..+2000

2000/2=1000 pairs of 2001

Sum

  • 2001(1000)
  • 2001000
User Gunilla
by
4.1k points
1 vote

Answer:

43. 20,100

44. 80,200

45. 320,400

46. 2,001,000

Explanation:

Gauss's method

General formula for the sum of the first n integers:


1+2+3+ \dots +n=(1)/(2)n(n+1)

Question 43

Given sum:

  • 1 + 2 + 3 + ... + 200

Therefore, n = 200.

Substitute the value of n into the formula:


\implies (1)/(2)(200)(200+1)=100 \cdot 201=20100

Question 44

Given sum:

  • 1 + 2 + 3 + ... + 400

Therefore, n = 400.

Substitute the value of n into the formula:


\implies (1)/(2)(400)(400+1)=200 \cdot 401=80200

Question 45

Given sum:

  • 1 + 2 + 3 + ... + 800

Therefore, n = 800.

Substitute the value of n into the formula:


\implies (1)/(2)(800)(800+1)=400 \cdot 801 =320400

Question 46

Given sum:

  • 1 + 2 + 3 + ... + 2000

Therefore, n = 2000.

Substitute the value of n into the formula:


\implies (1)/(2)(2000)(2000+1)=1000 \cdot 2001=2001000

User Dalbir Singh
by
5.0k points