Answer:
Explanation:
The sum of interior angles of a quadrilateral is 360°.
If we consider the measure of one of the unknown angles to be
°, we can set up the following equation:
![x + x + 75^\circ + 117^\circ = 360^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/nj07bt0hiefhrhoieae0knkso719blikmw.png)
Now we can solve for
:
⇒
![2x + 192^\circ = 360^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/xv8cgostf1y0b2wndkd78nhru87gian4ev.png)
⇒
[subtracting 192° from both sides]
⇒
![2x = 168^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/6vztudjoe67s6yd2uho2bfkzdi4yia0ky9.png)
⇒
[dividing both sides by 2]
⇒
![x = \bf84^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/qefu6xumtdh1qaj3tljdxhxgt1gsis892g.png)
Therefore, the other two angles each have a measure of 84°.