Split up the interval [0, 6] into 6 equally spaced subintervals of length
. So we have the partition
[0, 1] U [1, 2] U [2, 3] U [3, 4] U [4, 5] U [5, 6]
where the left endpoint of the
-th interval is
![\ell_i = i - 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/1wsmooxzwn9ij65issnvcl6h8bn2tq8w91.png)
with
.
The area under
on the interval [0, 6] is then given by the definite integral and approximated by the Riemann sum,
![\displaystyle \int_0^6 f(x) \, dx \approx \sum_(i=1)^6 f(\ell_i) \Delta x \\\\ ~~~~~~~~ = \sum_(i=1)^6 \bigg((i-1)^2 + 2\bigg) \\\\ ~~~~~~~~ = \sum_(i=1)^6 \bigg(i^2 - 2i + 3\bigg) \\\\ ~~~~~~~~ = \frac{6\cdot7\cdot13}6 - 6\cdot7 + 3\cdot6 = \boxed{67}](https://img.qammunity.org/2023/formulas/mathematics/high-school/261pmtklcypzxq3gzya8vze4yjf3arcmh7.png)
where we use the well-known sums,
![\displaystyle \sum_(i=1)^n 1 = \underbrace{1 + 1 + \cdots + 1}_(n\,\rm times) = n](https://img.qammunity.org/2023/formulas/mathematics/high-school/wx2nnt3b0rzt0q33a6jpsqrvsqruzu2nez.png)
![\displaystyle \sum_(i=1)^n i = 1 + 2 + \cdots + n = \frac{n(n+1)}2](https://img.qammunity.org/2023/formulas/mathematics/high-school/7b0fl6702683ttq7vccx2kz7buu0ii9pob.png)
![\displaystyle \sum_(i=1)^n i^2 = 1 + 4 + \cdots + n^2 = \frac{n(n+1)(2n+1)}6](https://img.qammunity.org/2023/formulas/mathematics/high-school/7bw89bpq7m91aiirnfp3dfbtnjm3i8kbai.png)