20.3k views
5 votes

{ \green \bigstar}\rm \: Convert \: ( \: 268.75 \: )_(10) \: into \: binary \: equivalent. \:

Thank uh ~​

User Katty
by
6.2k points

1 Answer

1 vote


\huge\underline{\underline{\boxed{\mathbb {SOLUTION:}}}}

Divide 268 by 2, keeping notice of the quotient and the remainder. You will have to keep dividing the quotient by 2 until you get a quotient of zero as shown below:


\small\longrightarrow \sf{(268)/(2) =134 \: R \: 0}


\small\longrightarrow \sf{(134)/(2) = \: 67 \: R \: 0}


\small\longrightarrow \sf{(67)/(2) = \: 33 \: R \: 1 }


\small\longrightarrow \sf{(33)/(2) = \: 16 \: R \: 1}


\small\longrightarrow \sf{(16)/(2) = \: 8 \: R \: 0}


\small\longrightarrow \sf{(8)/(2) = \: 4 \: R \: 0}


\small\longrightarrow \sf{(4)/(2) = \: 2 \: R \: 0}


\small\longrightarrow \sf{(2)/(2) = 1 \: R \: 0}


\small\longrightarrow \sf{(1)/(2) = \: 0 \: R \: 1}

Writing out the remainder from bottom to top will give 100001100.

Multiply the decimal 0.75 by 2 and keep noting down by integer values as shown:


\sf\longrightarrow{\small 0.75 \cdot 2 = 1.5 = 1 + 0.5}


\sf\longrightarrow{\small 0.5 \cdot 2 = 1.0 = 1 +0}

The equivalent binary for 0.75 will be 0.11.


\sf\longrightarrow{100001100 + 0.11 = 100001100.11}




\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}


\large\boxed{\bm{100001100.11}}

User Vpibano
by
5.5k points