![\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xaa7d1dklb2acngnsjg8wk07w22wlf09gz.png)
◉
![\large\bm{ -4}](https://img.qammunity.org/2023/formulas/mathematics/college/kznwtiwxm7l89z9l4bph0y9hfyj66rnh3e.png)
![\huge\underline{\underline{\boxed{\mathbb {SOLUTION:}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/k05x2odxjuvt8q7n98iq1w9fu88eyvqugs.png)
Before performing any calculation it's good to recall a few properties of integrals:
![\small\longrightarrow \sf{\int_(a)^b(nf(x) + m)dx = n \int^b _(a)f(x)dx + \int_(a)^bmdx}](https://img.qammunity.org/2023/formulas/mathematics/college/zzmp6el5uph5d9sxjqjiwce198vtn9m7qj.png)
![\small\sf{\longrightarrow If \: a \angle c \angle b \Longrightarrow \int^(b) _a f(x)dx= \int^c _a f(x)dx+ \int^(b) _c f(x)dx }](https://img.qammunity.org/2023/formulas/mathematics/college/78r3d2613pcn2lsqzous7xwqsvushjmi1o.png)
So we apply the first property in the first expression given by the question:
![\small \sf{\longrightarrow\int ^3_(-2) [2f(x) +2]dx= 2 \int ^3 _(-2) f(x) dx+ \int f^3 _(2) 2dx=18}](https://img.qammunity.org/2023/formulas/mathematics/college/khigzz9uwiqfvgm4qohk68hsh353r9u1b2.png)
And we solve the second integral:
![\small\sf{\longrightarrow2 \int ^3_(-2) f(x)dx + 2 \int ^3_(-2) f(x)dx = 2 \int ^3_(-2) f(x)dx + 2 \cdot(3 - ( - 2)) }](https://img.qammunity.org/2023/formulas/mathematics/college/3n5b2rsr8r5fpxf3pqrf9u9jyj03vzevdl.png)
![\small \sf{\longrightarrow 2 \int ^3_(-2) f(x)dx + 2 \int ^3_(-2) 2dx = 2 \int ^3_(-2) f(x)dx + 2 \cdot5 = 2 \int^3_(-2) f(x)dx10 = }](https://img.qammunity.org/2023/formulas/mathematics/college/tei07qd0xcv6ire22q7q3uxw9fod4zp1x3.png)
Then we take the last equation and we subtract 10 from both sides:
![\sf{{\longrightarrow 2 \int ^3_(-2) f(x)dx} + 10 - 10 = 18 - 10}](https://img.qammunity.org/2023/formulas/mathematics/college/iic3uomx5tce0ss3em04qasu0xc7l0pur6.png)
![\small \sf{\longrightarrow 2 \int ^3_(-2) f(x)dx = 8}](https://img.qammunity.org/2023/formulas/mathematics/college/yqu2lzvt1i4ydxu7boo33wxby6nf3rwaw2.png)
And we divide both sides by 2:
![\small\longrightarrow \sf{\frac{2 { \int}^(3) _(2) }{2} = (8)/(2) }](https://img.qammunity.org/2023/formulas/mathematics/college/8j0ey5gdv9lgdgy0os0ah5edobaghhaljk.png)
![\small \sf{\longrightarrow 2 \int ^3_(-2) f(x)dx=4}](https://img.qammunity.org/2023/formulas/mathematics/college/25kja6o2u0oz9xb8is3z15mga5yqkdusd9.png)
Then we apply the second property to this integral:
![\small \sf{\longrightarrow 2 \int ^3_(-2) f(x)dx + 2 \int ^3_(-2) f(x)dx + 2 \int ^3_(-2) f(x)dx = 4}](https://img.qammunity.org/2023/formulas/mathematics/college/9vyusgynerg1tb276ftli1ekmjem1zos1x.png)
Then we use the other equality in the question and we get:
![\small\sf{\longrightarrow 2 \int ^3_(-2) f(x)dx = 2 \int ^3_(-2) f(x)dx = 8 + 2 \int ^3_(-2) f(x)dx = 4}](https://img.qammunity.org/2023/formulas/mathematics/college/m8kace3870102eqxmplvl6nrrzf6f39d0w.png)
![\small\longrightarrow \sf{2 \int ^3_(-2) f(x)dx =4}](https://img.qammunity.org/2023/formulas/mathematics/college/j2xy380ngeqe3w207p8u8sue7j60oxkdew.png)
We substract 8 from both sides:
![\small\longrightarrow \sf{2 \int ^3_(-2) f(x)dx -8=4}](https://img.qammunity.org/2023/formulas/mathematics/college/4ao5qj9bcbwsevsr959g55zl0sg62xxtuy.png)
•
![\small\longrightarrow \sf{2 \int ^3_(-2) f(x)dx =-4}](https://img.qammunity.org/2023/formulas/mathematics/college/4r2m5r69axt21435m1cq6wc35oxn4ek4fc.png)