142k views
0 votes
=> The approximate mss of an electron is 1/10²⁷ g , Calculate the uncertainty in its velocity if the uncertainty in its position were of the order of 1/10¹¹ m ( h = 6.6 × 1/10³⁴ kg m² per sec ) ..​

2 Answers

6 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Here we go ~

According to Heisenberg's uncertainty principle :


\qquad \sf  \dashrightarrow \: \Delta x \Delta p \geqslant \cfrac{h}{4 \pi}


\qquad \sf  \dashrightarrow \: \Delta x \cdot m \Delta v \geqslant \cfrac{h}{4 \pi}


\qquad \sf  \dashrightarrow \: \Delta v \geqslant \cfrac{h}{4 \pi \cdot m \Delta x}


\qquad \sf  \dashrightarrow \: \Delta v \geqslant \cfrac{6.6 * 10 {}^( - 34) }{4 \pi \cdot 10 {}^( - 27) * 10 {}^( - 3) * 10 {}^( - 11) }


\textsf{ [ we took }
{ {10}^(-3) }
\textsf{because mass of electron is}
\textsf{ given in grams that need to be converted into kg ]}


\qquad \sf  \dashrightarrow \: \Delta v \geqslant \cfrac{6.6 }{4 \pi } * \cfrac{10 {}^( - 34) } {10 {}^( (- 27 - 3 - 11)) }


\qquad \sf  \dashrightarrow \: \Delta v \geqslant \cfrac{6.6 }{4 * 3.14 } * \cfrac{10 {}^( - 34) } {10 {}^( - 41) }


\qquad \sf  \dashrightarrow \: \Delta v \geqslant \cfrac{6.6 }{4 * 3.14 } * {10 {}^( 7)}


\qquad \sf  \dashrightarrow \: \Delta v \geqslant \cfrac{6.6 }{12.56 } * {10 {}^( 7)}


\qquad \sf  \dashrightarrow \: \Delta v \geqslant0.525* {10 {}^( 7)}


\qquad \sf  \dashrightarrow \: \Delta v \geqslant5.25* {10 {}^( 6)} \:\:m/s

User Phininity
by
3.7k points
4 votes

Answer:

Δx(m.Δv)=h/4π

here ,

Δv = uncertainty in velocity

10−11×10−27×Δv=6.626×10−34/4×22/7

=5.25×103ms−1

User JoRouss
by
4.3k points