Answer:
D.= √29
Explanation:
Greetings!
The distance between the two complex numbers,
Z₁=a+bi and Z₂=c+di in the complex plane is
![d = \sqrt{(c - a) {}^(2) + (d - b) {}^(2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/8slig4ikonv6cplnnvjv2bx3bcg29hgwqi.png)
In the Cartesian plane, the distance between, one point and other is (x₁,y₁) and (x₂,y₂) is the distance formula is
![d = √((X₂-X₁)² + (Y₂-Y₁)²)](https://img.qammunity.org/2023/formulas/mathematics/high-school/p59f5r9807pxfjrgylbuk0d2abiv6iu1k1.png)
To find the distance between the two complex numbers using the formula
![d = \sqrt{(c - a) {}^(2) + (d - b) {}^(2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/8slig4ikonv6cplnnvjv2bx3bcg29hgwqi.png)
where,
![d = \sqrt{(a - b) {}^(2) + (d - b) {}^(2) } \\ d = \sqrt{(6 - 4) {}^(2) + ( - 2 - 3) {}^(2) } \\ d = \sqrt{(2) {}^(2) + ( - 5) {}^(2) } \\ d = √(4 + 25) = √(29 \\ )](https://img.qammunity.org/2023/formulas/mathematics/high-school/1fnceqgpcya8yw7ni1mds38o5d53rboppk.png)